Hey Matthew. We only did autointerp for 200 randomly sampled latents in each dict, rather than the full 60 × 768 = 46080 latents (although half of these die). So our results there wouldn't be of much help for your project unfortunately.
Thanks a lot for letting us know about the dead links. Though note you have a "%20" in the second one which shouldn't be there. It works fine without it.
I think the concern here is twofold:
Regarding 2, consider the trend towards determinicity we see for the probability that GPT-N will output a grammatically correct sentence. For GPT-1 this was low, and it has trended upwards towards determinicity with newer releases. We're seeing a similar trend for scheming behaviour (though hopefully we can buck this trend with alignment techniques).
I plan to spend more time thinking about AI model security. The main reasons I’m not spending a lot of time on it now are:
Thanks for the thoughts. They've made me think that I'm likely underestimating how much Control is needed to get useful work out of AIs capable and inclined to scheme. Ideally, this fact would increase the likelihood of other actors implementing AI Control schemes with the stolen model that are at least sufficient for containment and/or make them less likely to steal the model, though I wouldn’t want to put too much weight on this hope.
>This argument isn't control specific, it applies to any safety scheme with some operating tax or implementation difficulty.[1][2]
Yep, for sure. I’ve changed the title and commented about this at the end.
In which worlds would AI Control (or any other agenda which relies on non-trivial post-training operation) prevent significant harm?
When I bring up the issue of AI model security to people working in AI safety, I’m often met with something of the form “yes, this is a problem. It’s important that people work hard on securing AI models. But it doesn’t really affect my work”.
Using AI Control (an area which has recently excited many in the field) as an example, I lay out an argument for why it might not be as effective an agenda as one might think after considering the realities of our cyber security situation.
There are of course other arguments against working on AI control. E.g. it may encourage the development and use of models that are capable of causing significant harm. This is an issue if the AI control methods fail or if the model is stolen. So one must be willing to eat this cost or argue that it’s not a large cost when advocating for AI Control work.
This isn’t to say that AI Control isn’t a promising agenda, I just think people need to carefully consider the cases in which their agenda falls down for reasons that aren’t technical arguments about the agenda itself.
I’m also interested to hear takes from those excited by AI Control on which conditions listed in #6 above that they expect to hold (or to otherwise poke holes in the argument).
EDIT (thanks Zach and Ryan for bringing this up): I didn't want to imply that AI Control is unique here, this argument can be levelled at any agenda which relies on something like a raw model + non-trivial operation effort. E.g. a scheme which relies on interpretability or black box methods for monitoring or scalable oversight.
They are indeed all hook_resid_pre. The code you're looking at just lists a set of positions that we are interested in viewing the reconstruction error of during evaluation. In particular, we want to view the reconstruction error at hook_resid_post of every layer, including the final layer (which you can't get from hook_resid_pre).
Here's a wandb report that includes plots for the KL divergence. e2e+downstream indeed performs better for layer 2. So it's possible that intermediate losses might help training a little. But I wouldn't be surprised if better hyperparams eliminated this difference; we put more effort into optimising the SAE_local hyperparams rather than the SAE_e2e and SAE_e2e+ds hyperparams.
Very well articulated. I did a solid amount of head nodding while reading this.
As you appear to be, I'm also becoming concerned about the field trying to “cash in” too early too hard on our existing methods and theories which we know have potentially significant flaws. I don’t doubt that progress can be made by pursuing the current best methods and seeing where they succeed and fail, and I’m very glad that a good portion of the field is doing this. But looking around I don’t see enough people searching for new fundamental theories or methods that better explain how these networks actually do stuff. Too many eggs are falling in the same basket.
I don't think this is as hard a problem as the ones you find in Physics or Maths. We just need to better incentivise people to have a crack at it, e.g. by starting more varied teams at big labs and by funding people/orgs to pursue non-mainline agendas.
Thanks for prediction. Perhaps I'm underestimating the amount of shared information between in-context tokens in real models. Thinking more about it, as models grow, I expect the ratio of contextual information which is shared across tokens in the same context to more token-specific things like part of speech to increase. Obviously a bigram-only model doesn't care at all about the previous context. You could probably get a decent measure of this just by comparing cosine similarities of activations within context to activations from other contexts. If true, this would mean that as models scale up, you'd get a bigger efficiency hit if you didn't shuffle when you could have (assuming fixed batch size).
heh, unfortunately a single SAE is 768 * 60. The residual stream in GPT2 is 768 dims and SAEs are big. You probably want to test this out on smaller models.
I can't recall the compute costs for that script, sorry. A couple of things to note:
It's a fun idea. Though a serious issue is that your external LoRA weights are going to be very large because their input and output will need to be the same size as your SAE dictionary, which could be 10-100x (or more, nobody knows) the residual stream size. So this could be a very expensive setup to finetune.