Abstract
Despite much progress in training AI systems to imitate human language, building agents that use language to communicate intentionally with humans in interactive environments remains a major challenge. We introduce Cicero, the first AI agent to achieve human-level performance in Diplomacy, a strategy game involving both cooperation and competition that emphasizes natural language negotiation and tactical coordination between seven players. Cicero integrates a language model with planning and reinforcement learning algorithms by inferring players' beliefs and intentions from its conversations and generating dialogue in pursuit of its plans. Across 40 games of an anonymous online Diplomacy league, Cicero achieved more than double the average score of the human players and ranked in the top 10% of participants who played more than one game.
Meta Fundamental AI Research Diplomacy Team (FAIR)†, Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, et al. 2022. “Human-Level Play in the Game of Diplomacy by Combining Language Models with Strategic Reasoning.” Science, November, eade9097. https://doi.org/10.1126/science.ade9097.
Interestingly, the paper seems to imply that the system does not attempt to deceive:
Cicero is designed to be honest in the sense that all its messages are generated from its intents, where its intents are what moves Cicero in fact intends to play at the moment Cicero said them (Cicero can change its mind after saying things), and at the end of the turn played moves are equal to its last intents.
Not only Cicero uses its true intents to generate messages, it also tries to generate messages that correspond to intents. That is, its dialogue model is trained to imitate humans in WebDiplomacy, but when humans intend to attack Belgium, they will... (read more)