Related to: How to Convince Me That 2 + 2 = 3
This started as a reply to this thread, but it would have been offtopic and I think the subject is important enough for a top-level post, as there's apparently still significant confusion about it.
How do we know that two and two make four? We have two possible sources of knowledge on the subject. Note that both happen to be entirely physical systems that run on the same merely ordinary entropy that makes car engines go.
First, evolution. Animals whose subitizing apparatus output 2+2=3 were selected out.
Second, personal observation; that is, operation of our sense organs. I can put 2 bananas on a table, then put down 2 more bananas, and count out 4 bananas; my schoolteachers told me 2+2 is 4; I can type 2+2 into a calculator and get 4; etc.
Now, notwithstanding the above, does 2+2 really equal 4, independent of any human thoughts about it? This way lies madness. If there is some kind of pure essence of math that never physically impinges upon the stuff inside our heads (or, worse, exists "outside the physical universe"), there's no sensible way we can know about it. It's a dragon in the garage.
The fact that our faculty for counting bananas can also be used to make predictions about, say, the behavior of quarks is extremely surprising to our savannah-adapted brains. After all, bananas are ordinary things we can hold in our hands and eat, and quarks are tiny and strange and definitely not ordinary at all. So, of course, the obvious thing that comes to mind to explain this is a supernatural force. How else could such dissimilar things be governed by the same laws?
The disappointing truth is that bananas are quarks, and by amazing good fortune, the properties of everyday macroscopic objects are sufficiently related to those of other physical phenomena that a few lucky humans can just barely manage to crudely adapt their banana-counting brain hardware to work in those other domains. No supernatural math required.
Hey, we no longer need to grant mathematical statements special transcendent status now that we have computers and the axiomatic method. Math theorems predict outputs of specified computer programs given specified inputs, period, end of story. Thus it all folds back neatly into experimental science and directly observable facts. And if some proof can't be thus interpreted - can't be single-stepped through an axiomatic checker even in principle - then it's not yet math.
Of course this leaves unanswered the question of why math not only works internally, but also describes our world so well. Maybe we'll learn the answer in time.
Aargh! Every time I come across this argument, I am frustrated that people don't see how this 'problem' is resolved. Even Einstein is said to have remarked on the 'mystery' of why the world is knowable.
We ditch the 'explanations' that don't describe our world well, and keep those that do. That's why our models end up looking like the world. When new data arrives that isn't compatible with tho... (read more)