Related to: How to Convince Me That 2 + 2 = 3
This started as a reply to this thread, but it would have been offtopic and I think the subject is important enough for a top-level post, as there's apparently still significant confusion about it.
How do we know that two and two make four? We have two possible sources of knowledge on the subject. Note that both happen to be entirely physical systems that run on the same merely ordinary entropy that makes car engines go.
First, evolution. Animals whose subitizing apparatus output 2+2=3 were selected out.
Second, personal observation; that is, operation of our sense organs. I can put 2 bananas on a table, then put down 2 more bananas, and count out 4 bananas; my schoolteachers told me 2+2 is 4; I can type 2+2 into a calculator and get 4; etc.
Now, notwithstanding the above, does 2+2 really equal 4, independent of any human thoughts about it? This way lies madness. If there is some kind of pure essence of math that never physically impinges upon the stuff inside our heads (or, worse, exists "outside the physical universe"), there's no sensible way we can know about it. It's a dragon in the garage.
The fact that our faculty for counting bananas can also be used to make predictions about, say, the behavior of quarks is extremely surprising to our savannah-adapted brains. After all, bananas are ordinary things we can hold in our hands and eat, and quarks are tiny and strange and definitely not ordinary at all. So, of course, the obvious thing that comes to mind to explain this is a supernatural force. How else could such dissimilar things be governed by the same laws?
The disappointing truth is that bananas are quarks, and by amazing good fortune, the properties of everyday macroscopic objects are sufficiently related to those of other physical phenomena that a few lucky humans can just barely manage to crudely adapt their banana-counting brain hardware to work in those other domains. No supernatural math required.
I argued, elsewhere in this thread, that you could not evolve a mathematical understanding that 2+2=3, because “2+2=4” is mandatory, independent of any physical reality or observation, any context whatsoever. This was not whole-heartedly accepted so let me again try to defend the inviolability and universality of mathematics.
I assert my case with three definitions: a definition of mathematics, a definition of logically follows, and a definition of consistent.
Mathematics is: you define things and then determine what logically follows from those things.
As fallible humans, we may not know if something really logically follows. But we just define what we mean by "logically follow": logically following means follows necessarily, mandatorily, independently of everything else.
If an axiomatic system is consistent it means that if x logically follows, then “not x” does not logically follow.
Maybe you don't like these definitions. But that is what they are. To the extent to which I can speak for mathematics, if you change these definitions, you’re not talking about mathematics any more.
Unlike science, the definitions precede the observation. Here, imagine: humans in the savannas, dressed in their animal skins, shake their clubs at the empirical world and the unreliability of the senses. They wield the power by defining exactly what they mean with no heed whatsoever to what actually is. This is the difference between math and science, this is why mathematics is trustworthy even when all else -- all empirical sense -- might fail.
Consider Peano arithmetic. We understand that 2+2=4 logically follows from the axioms in Peano arithmetic in our current universe, context C1. If "2+2 is not equal to 4" is deduced by the Peano axioms in some other context C2, then at least one of the following must be true:
(a) 2+2=4 does not logically follow in context C2, so 2+2=4 did not really logically follow from the Peano axioms -- by definition of logically follow, as it is context independent,
(b) 2+2=4 does logically follow in context C2, so the Peano arithmetic is not consistent -- by definition of consistent
Thus, mathematical truth is independent of context, including the physical world. This is why mathematicians love saying, "it is true by definition". It is the precise source of the omnipotence of mathematics. That's it. Everything mathematically true is true by definition. It’s our terms, our game. Unlike the empirical world where we don’t get to define anything, where the existence of things precede our observation.
While this might seem overly pedantic (hardly something to complain about in this discussion), I'd like to point out that this definition only matches the usual one if you also accept the law of non-contradiction. More precisely, a system is consistent if it does not contain a contradiction.
Also, your definitions of Mathematics and "logically follows" don't seem very... good. Did you make them up?
EDIT: changed "excluded middle" to "non-contradiction". duh.
ETA: Yeah, my point was stupid. Nevermind.