Yes I'm quite aware... note that if there's a sequence of outcomes whose values increase without bound, then you could construct a lottery that has infinite value by appropriately mixing the lotteries together, e.g. put probability 2^-k on the outcome with value 2^k. Then this lottery would be problematic from the perspective of continuity (or even having an evaluable utliity function).

An unbounded function is one that can take arbitrarily large

finitevalues, not necessarily one that actually evaluates to infinity somewhere.Yes I'm quite aware... note that if there's a sequence of outcomes whose values increase without bound, then you could construct a lottery that has infinite value by appropriately mixing the lotteries together, e.g. put probability 2^-k on the outcome with value 2^k. Then this lottery would be problematic from the perspective of continuity (or even having an evaluable utliity function).