## LESSWRONGLW

B implies A would be wishful thinking implies that you are correct. This is obviously false.

It being a law of the Internet that corrections usually contain at least one error, that applies to my own corrections too. In this case the error is the definitions of A and B.

A=being correct, B=non-wishful-thinking.

"Having the sum be correct is a necessary condition for non-wishful thinking" means B implies A, which in turn is equivalent to (B || ~A).

"You can be wrong for reasons other than wishful thinking" means ~(~B implies ~A), which is equivalent to ~(~B || A), which is equivalent to B && ~A.

Same conclusions as before, and they're still not inconsistent.

A=being correct, B=non-wishful-thinking.

Now that we have that out of the way, we can start communicating.

A counterexample to (B || ~A) would be (~B && A), so wishful thinking while still being correct. As I said in my last post, you just assume you have a lot of money because it would be awesome, and by complete coincidence, you actually do have a lot of money.

Now that we have established the language correctly and I looked through my first post again, you are correct and I misread it. I tried to go back and count through all the mistakes that lead to our mutual confusion, and I just couldn't do it. We have layers of mistakes explaining each others mistakes.