I think the supposed Occamian benefit is overstated.

To clarify, do you mean that Eliezer overstated the degree to which the RAM vs code simplicity point applies to this specific physics example, or that Eliezer overstated the principle itself? I'm more inclined to accept the former than the latter.

Maybe he didn't overstate the significance of the principle even when it comes to interpreting QM, but I think using it to pick out a particular interpretation (whether MWI or TI) leads to overconfidence, and isn't very good evidence in itself, compared to relatively naive considerations like "using straightforward physical intuition, this idea that other worlds are somehow in a metaphysical sense as 'real' as our world doesn't seem likely to hold water". In retrospect I might be attributing connotations to Eliezer's original argument that weren't in that specific argument and only implicit in the overall tone of the sequence. It's been two years since I read the QM sequence.

How accurate is the quantum physics sequence?

by Paul Crowley 1 min read17th Apr 201268 comments


Prompted by Mitchell Porter, I asked on Physics StackExchange about the accuracy of the physics in the Quantum Physics sequence:

What errors would one learn from Eliezer Yudkowsky's introduction to quantum physics?

Eliezer Yudkowsky wrote an introduction to quantum physics from a strictly realist standpoint. However, he has no qualifications in the subject and it is not his specialty. Does it paint an accurate picture overall? What mistaken ideas about QM might someone who read only this introduction come away with?

I've had some interesting answers so far, including one from a friend that seems to point up a definite error, though AFAICT not a very consequential one: in Configurations and Amplitude, a multiplication factor of i is used for the mirrors where -1 is correct.

Physics StackExchange: What errors would one learn from Eliezer Yudkowsky's introduction to quantum physics?