But in order to do so, he had to introduce the requirement that the probability measure of different observations should be defined for vectors in the Hilbert space of solutions to the Schroedinger equation. An extra law of physics, basically. Which is fine. But it means that many worlds isn't necessarily simpler than other stuff.

What? No, seriously... what? The extra law of physics you just listed was, 'The Schrodinger Equation determines physical reality'

Which is to say, it's entirely redundant with the rest of quantum mechanics. This is not new infor... (read more)

Well, if you could say that in a way that isn't also true for the naive probabilities that would be a good avenue to pursue. Yes. A fair bit. Yes.

How accurate is the quantum physics sequence?

by Paul Crowley 1 min read17th Apr 201268 comments


Prompted by Mitchell Porter, I asked on Physics StackExchange about the accuracy of the physics in the Quantum Physics sequence:

What errors would one learn from Eliezer Yudkowsky's introduction to quantum physics?

Eliezer Yudkowsky wrote an introduction to quantum physics from a strictly realist standpoint. However, he has no qualifications in the subject and it is not his specialty. Does it paint an accurate picture overall? What mistaken ideas about QM might someone who read only this introduction come away with?

I've had some interesting answers so far, including one from a friend that seems to point up a definite error, though AFAICT not a very consequential one: in Configurations and Amplitude, a multiplication factor of i is used for the mirrors where -1 is correct.

Physics StackExchange: What errors would one learn from Eliezer Yudkowsky's introduction to quantum physics?