And, subordinate to those three, the point that Occam's Razor applies to code not RAM (so to speak). Worth mentioning since I think that's the part that went over shminux's head.

You are right, it did the first time I tried to honestly estimate the complexity of QM (I wish someone else bother to do it numerically, as well). However, even when removing the necessary boundary conditions and grid storage (they take up lots of RAM), one still ends up with the code that evolves the Schroediger equation (complicated) and applies the Born postulate (trivial) for any interpretation.

But collapse interpretations require additional non-local algorithms, which to me seem to be, by necessity, incredibly complicated

How accurate is the quantum physics sequence?

by Paul Crowley 1 min read17th Apr 201268 comments

49


Prompted by Mitchell Porter, I asked on Physics StackExchange about the accuracy of the physics in the Quantum Physics sequence:

What errors would one learn from Eliezer Yudkowsky's introduction to quantum physics?

Eliezer Yudkowsky wrote an introduction to quantum physics from a strictly realist standpoint. However, he has no qualifications in the subject and it is not his specialty. Does it paint an accurate picture overall? What mistaken ideas about QM might someone who read only this introduction come away with?

I've had some interesting answers so far, including one from a friend that seems to point up a definite error, though AFAICT not a very consequential one: in Configurations and Amplitude, a multiplication factor of i is used for the mirrors where -1 is correct.

Physics StackExchange: What errors would one learn from Eliezer Yudkowsky's introduction to quantum physics?