In regards to the first experiment (Fig.1) "the little two-dimensional arrow for the configuration "Detector 1 gets a photon" has the same squared length as for "Detector 2 gets a photon"." This mathematical equality should have resulted in each photon arriving at detectors 1 & 2 simultaneously. But this never happens. Could anybody explain to me reason for such a discrepancy between math and reality?

Eliezer, regarding the Fig.1 experiment above you're saying "The half-silvered mirror obeys the same rule every time." "This same result occurs—the same amplitudes stored in the same configurations—every time you run the program (every time you do the experiment)." OK, mathematical result is the same. However, physical results at detectors 1 & 2 are not the same: click at either of them is not predictable. There is symmetry in math vs asymmetry of physical result for any individual photon. Is there any "quantum explanation" for such physical dissimilarity?

011y

The ratio of "photon at detector 1" and "photon at detector 2" (averaged over
enough trials) is 1.
Edit: This was actually written as a response to one
[http://lesswrong.com/lw/pd/configurations_and_amplitude/604c] of these
[http://lesswrong.com/lw/pd/configurations_and_amplitude/604e] comments.

Eliezer is saying that when the ratio of the squared moduli is 1, than Detector 1 goes off half the time and Detector 2 goes off half the time. But why it should be necessarily interpreted this way? Is this another QM rule? What prevents, in this case, an alternative interpretation: a photon must split in half and arrive at both detectors at the same time?