•

Applied to Extracting Money from Causal Decision Theorists by Caspar Oesterheld ago

•

Applied to Perspective Based Reasoning Could Absolve CDT by dadadarren ago

•

Applied to Decision Theory: A (Normative) Introduction by Pareto Optimal ago

•

Applied to Decision theory is not policy theory is not agent theory by Cole Wyeth ago

•

Applied to Rational Agents Cooperate in the Prisoner's Dilemma by Isaac King ago

•

Applied to Newcomb Variant by lsusr ago

•

Applied to Newcomb's paradox complete solution. by Augs SMSHacks ago

•

Applied to Further considerations on the Evidentialist's Wager by Martín Soto ago

**Causal Decision Theory** – CDT – is a branch of decision theory which advises an agent to take actions which maximize the causal consequences on the probability of desired outcomes ^{1}. As any branch of decision theory, it prescribes taking the action that maximizes expected utility, i.e the action which maximizes the sum of the utility obtained in each outcome weighted by the probability of that outcome occurring, *given *your action. Different decision theories correspond to different ways of construing ~~the~~this dependence between actions and outcomes. CDT focuses on the *causal *relations between one’s actions and outcomes, whilst Evidential Decision Theory – EDT - concerns itself with what an action *indicates *about the world (which is operationalized by the conditional probability). That is, according to CDT, a rational agent should track the available causal relations linking his actions to the desired outcome and take the action which will better enhance the chances of the desired outcome.

**Causal Decision Theory** – CDT – is a branch of decision theory which advises an agent to take actions which maximize the causal consequences on the probability of desired outcomes ^{1}. As any branch of decision theory, it prescribes taking the action that maximizes expected utility, i.e the action which maximizes the sum of the utility obtained in each outcome weighted by the probability of that outcome occurring, *given *your action. Different decision theories correspond to different ways of ~~thinking about what "the probability of an outcome given your action" is supposed to mean.~~construing the dependence between actions and outcomes. CDT focuses on the *causal *relations between one’s actions and outcomes, whilst Evidential Decision Theory – EDT - concerns itself with what an action *indicates *about the world (which is operationalized by the conditional probability). That is, according to CDT, a rational agent should track the available causal relations linking his actions to the desired outcome and take the action which will better enhance the chances of the desired outcome.

**Causal Decision Theory** – CDT – is a branch of decision theory which advises an agent to take actions ~~that~~which maximize the causal consequences on the probability of desired outcomes ^{1}. As any branch of decision theory, it prescribes taking the action that maximizes expected utility, i.e the action which maximizes the sum of the utility obtained in each outcome weighted by the probability of that outcome occurring, *given *your action. Different decision theories correspond to different ways of thinking about what "the probability of an outcome given your action" is supposed to mean. CDT focuses on the *causal *relations between one’s actions and outcomes, whilst Evidential Decision Theory – EDT - concerns itself with what an action *indicates *about the world (which is operationalized by the conditional probability). That is, according to CDT, a rational agent should track the available causal relations linking his actions to the desired outcome and take the action which will better enhance the chances of the desired outcome.

**Causal Decision Theory** – CDT – is a branch of decision theory which advises an agent to take actions that ~~maximizes~~maximize the causal consequences on the probability of desired outcomes ^{1}. As any branch of decision theory, it prescribes taking the action that maximizes ~~utility~~~~, that which utility equals or exceeds the utility of every other option. The utility of each action is measured by the ~~expected utility, i.e the ~~averaged by probabilities~~action which maximizes the sum of the utility obtained in each outcome weighted by the probability of ~~each~~that outcome occurring, *given *your action. Different decision theories correspond to different ways of ~~its possible results. How~~thinking about what "the probability of an outcome given your action" is supposed to mean. CDT focuses on the *causal *relations between one’s actions ~~can influence the probabilities differ between the branches. Contrary to~~and outcomes, whilst Evidential Decision Theory – EDT - ~~CDT focuses on~~concerns itself with what an action *indicates *about the ~~causal relations between one’s actions and its outcomes, instead of focusing on which actions provide evidences for desired outcomes. According~~world (which is operationalized by the conditional probability). That is, according to ~~CDT~~CDT, a rational agent should track the available causal relations linking his actions to the desired outcome and take the action which will better enhance the chances of the desired outcome.

One usual example where EDT and CDT commonly diverge is the Smoking lesion: “Smoking is strongly correlated with lung cancer, but in the world of the Smoker's Lesion this correlation is understood to be the result of a common cause: a genetic lesion that tends to cause both smoking and cancer. Once we fix the presence or absence of the lesion, there is no additional correlation between smoking and cancer. Suppose you prefer smoking without cancer to not smoking without cancer, and prefer smoking with cancer to not smoking with cancer. Should you smoke?” CDT would recommend smoking since there is no causal connection between smoking and cancer. They are both caused by a gene, but have no causal direct connection with each other. ~~EDT~~EDT, on the other ~~hand~~hand, would recommend against smoking, since smoking is an evidence for having the mentioned gene and thus should be avoided.

**Causal Decision Theory** – CDT ~~-~~– is a branch of decision theory which advises an agent to take actions that maximizes the causal consequences on the probability of desired outcomes ^{1}. As any branch of decision theory, it prescribes taking the action that maximizes utility, that which utility equals or exceeds the utility of every other option. The utility of each action is measured by the expected utility, the averaged by probabilities sum of the utility of each of its possible results. How the actions can influence the probabilities differ between the branches. Contrary to Evidential Decision Theory – EDT - CDT focuses on the causal relations between one’s actions and its outcomes, instead of focusing on which actions provide evidences for desired outcomes. According to CDT a rational agent should track the available causal relations linking his actions to the desired outcome and take the action which will better enhance the chances of the desired outcome.

•

Applied to MIRI/OP exchange about decision theory by Rob Bensinger ago

•

Applied to LCDT, A Myopic Decision Theory by adamShimi ago

•

Applied to Newcomb's Problem standard positions ago

One usual example where EDT and CDT commonly diverge is the Smoking lesion: “Smoking is strongly correlated with lung cancer, but in the world of the Smoker's Lesion this correlation is understood to be the result of a common cause: a genetic lesion that tends to cause both smoking and cancer. Once we fix the presence or absence of the lesion, there is no additional correlation between smoking and cancer. Suppose you prefer smoking without cancer to not smoking without cancer, and prefer smoking with cancer to not smoking with cancer. Should you smoke?” CDT would recommend smoking since there is no causal connection between smoking and cancer. They are both caused by a gene, but have no causal direct connection with each other. EDT, on the other hand, would recommend against smoking, since smoking is

~~an~~evidence for having the mentioned gene and thus should be avoided.The core aspect of CDT is mathematically represented by the fact it uses probabilities of conditionals in place of conditional probabilities

^{2}. The probability of a conditional is the probability of the whole conditional being true, where the conditional probability is the probability of the consequent given the antecedent. A conditional probability of B given A - P(B|A) -, simply implies the Bayesian probability of the event B happening given we known A happened, it’s used in EDT. The probability of conditionals – P(A > B) - refers to the probability that the conditional 'A implies B' is true, it is the probability of the contrafactual ‘If A, then B’ be the case. Since contrafactual analysis is the key tool used to speak about causality, probability of conditionals are said to mirror causal relations. In most cases these two probabilities track each other, and CDT and EDT give the same answers. However, some particular problems have arisen where their predictions for rational action diverge such as the Smoking lesion problem – where CDT seems to give a more reasonable prescription – and Newcomb's problem – where CDT seems unreasonable. David Lewis proved^{3}it's impossible~~to~~for probabilities of conditionals to always track conditional probabilities. Hence, evidential relations aren’t the same as causal relations and CDT and EDT will always diverge in some cases.