flodorner

Wiki Contributions

Comments

What's the difference between newer Atari-playing AI and the older Deepmind one (from 2014)?

The first thing you mention does not learn to play Atari, and is in general trained quite differently from Atari-playing AI's (as it relies on self-play to kind of automatically generate a curriculum of harder and harder tasks, at least for the some of the more competitive tasks in XLand).

EfficientZero: human ALE sample-efficiency w/MuZero+self-supervised

Do you have a source for Agent57 using the same network weights for all games? 

EfficientZero: human ALE sample-efficiency w/MuZero+self-supervised

A lot of the omissions you mention are due to inconsistent benchmarks (like the switch from the full Atari suite to Atari 100k with fewer and easier games) and me trying to keep results comparable. 

This particular plot only has each year's SOTA, as it would get too crowded with a higher temporal resolution (I used it for the comment, as it was the only one including smaller-sample results on Atari 100k and related benchmarks). I agree that it is not optimal for eyeballing trends. 

I also agree that temporal trends can be problematic as people did not initially optimize for sample efficiency (I'm pretty sure I mention this in the paper); it might be useful to do a similar analysis for the recent Atari 100k results (but I felt that there was not enough temporal variation yet when I wrote the paper last year as sample efficiency seems to only have started receiving more interest starting in late 2019). 

EfficientZero: human ALE sample-efficiency w/MuZero+self-supervised

I guess I should update my paper on trends in sample efficiency soon / check whether recent developments are on trend (please message me if you are interested in doing this). This improvement does not seem to be extremely off-trend, but is definitely a bit more than I would have expected this year. Also, note that this results does NOT use the full suite of Atari games, but rather a subset of easier ones. 

Proposal: Scaling laws for RL generalization

Your point b) seems like it should also make you somewhat sceptical of any of this accelerating AI capabilities, unless you belief that capabilities-focused actors would change their actions based on forecasts, while safety-focused actors wouldn't. Obviously, this is a matter of degree, and it could be the case that the same amount of action-changing by both actors still leads to worse outcomes.

I think that if OpenAI unveiled GPT4 and it did not perform noticeably better than GPT3 despite a lot more parameters, that would be a somewhat important update. And it seems like a similar kind of update could be produced by well-conducted research on scaling laws for complexity.

Proposal: Scaling laws for RL generalization

Most recent large safety projects seem to be focused on language models. So in case the evidence pointed towards problem complexity not mattering that much, I would expect the shift in prioritization towards more RL-safety research to outweigh the effect on capability improvements (especially for the small version of the project, about which larger actors might not care that much). I am also sceptical whether the capabilities of the safety community are in fact increasing exponentially.

I am also confused about the resources/reputation framing. To me this is a lot more about making better predictions when we will get to transformative AI, and how this AI might work, such that we can use the available resources as efficiently as possible by prioritizing the right kind of work and hedging for different scenarios to an appropriate degree. This is particularly true for the scenario where complexity matters a lot (which I find overwhelmingly likely), in which too much focus on very short timelines might be somewhat costly (obviously none of these experiements can remotely rule out short timelines, but I do expect that they could attenuate how much people update on the XLand results).

Still, I do agree that it might make sense to publish any results on this somewhat cautiously.

Proposal: Scaling laws for RL generalization

Thank you!

  1. I agree that switching the simulator could be useful where feasible (you'd need another simulator with compatible state- and action-spaces and somewhat similar dynamics.)

  2. It indeed seems pretty plausible that instructions will be given in natural language in the future. However, I am not sure that would affect scaling very much, so I'd focus scaling experiments on the simpler case without NLP for which learning has already been shown to work.

  3. IIRC, transformers can be quite difficult to get to work in an RL setting. Perhaps this is different for PIO, but I cannot find any statements about this in the paper you link.

How truthful is GPT-3? A benchmark for language models

I guess finetuning a model to produce truthful statements directly is nontrivial (especially without a discriminator model) because there are many possible truthful and many possible false responses to a question? 

We need a new philosophy of progress

Oh, right; I seemed to have confused Gibbard-Satterthwaite with Arrow.

Do you know whether there are other extensions of Arrow's theorem to single-winner elections? Having a voting method return a full ranking of alternatives does not appear to be super important in practice...

Load More