books added since the list was last updated -
On applied Bayesian statistics, Dr_Manhattan recommends Lambert's A student's guide to Bayesian Statistics over McEarlath's Statistical Rethinking, Kruschke's Doing Bayesian Data Analysis, and Gelman's Bayesian Data Analysis.
On Functional Analysis, krnsll recommends Brezis's Functional Analysis, Sobolev Spaces and Partial Differential Equations over Kreyszig's and Lax's.
On Probability Theory, crab recommends Feller's An Introduction to Probability Theory over Jaynes' Probability Theory: The Logic of Science and MIT OpenCoursewar's Introduction to Probability and Statistics.
On History of Economics, Pablo_Stafforini recommends Sandmo's Economics Evolving over Robbins' A History of Economic Thought and Schumpeter's History of Economic Analysis.
On Relativity, PeterDonis recommends Carroll's Spacetime and Geometry over Taylor & Wheeler's Spacetime Physics, Misner, Thorne, & Wheeler's Gravitation, Wald's General Relativity, and Hawking & Ellis's The Large Scale Structure of Spacetime.
On Category Theory, adamShimi recommends Awodey's Category Theory over Maclane's category theory for the working mathematician.
On General Psycology, J...
Music theory: An Introduction to Tonal Theory by Peter Westergaard.
Comparing this book to others is almost unfair, because in a sense, this is the only book on its subject matter that has ever been written. Other books purporting to be on the same topic are really on another, wrong(er) topic that is properly regarded as superseded by this one.
However, it's definitely worth a few words about what the difference is. The approach of "traditional" texts such as Piston's Harmony is to come up with a historically-based taxonomy (and a rather awkward one, it must be said) of common musical tropes for the student to memorize. There is hardly so much as an attempt at non-fake explanation, and certainly no understanding of concepts like reductionism or explanatory parsimony. The best analogy I know would be trying to learn a language from a phrasebook instead of a grammar; it's a GLUT approach to musical structure.
(Why is this approach so popular? Because it doesn't require much abstract thought, and is easy to give students tests on.)
Not all books that follow this traditional line are quite as bad as Piston, but some are even worse. An example of not-quite-so-bad would be Aldwel...
Can you summarize Westergaard's approach? I know why the typical methods are bad, but I'm interested in what exactly his alternative is.
In ITT itself, Westergaard offers the following summary (p.375):
we can generate all the notes of any tonal piece from the pitches of its tonic triad by successive application of a small set of operations, and moreover
the successive stages in the generation process show how we understand the notes of that piece in terms of one another
(This, of course, is very similar to the methodology of theoretical linguistics.)
Westergaard basically considers tonal music to be a complex version of species counterpoint --- layers upon layers of it. He inherits from Schenker the idea of systematically reversing the process of "elaboration" to reveal the basic structures underlying a piece (or passage) of music, but goes even further than Schenker in completely explaining away "harmony" as a component of musical structure.
Notes are considered to be elements of lines, not "chords". They operations by which they are generated within lines are highly intuitive. They essentially reduce to two: step motion, and borrowing from othe...
Subject: Representation Theory
Recommendation: Group Theory and Physics by Shlomo Sternberg.
This is a remarkable book pedagogically. It is the most extremely, ridiculously concrete introduction to representation theory I've ever seen. To understand representations of finite groups you literally start with crystal structures. To understand vector bundles you think about vibrating molecules. When it's time to work out the details, you literally work out the details, concretely, by making character tables and so on. It's unique, so far as I've read, among math textbooks on any subject whatsoever, in its shameless willingness to draw pictures, offer physical motivation, and give examples with (gasp) literal numbers.
Math for dummies? Well, actually, it is rigorous, just not as general as it could potentially be. Also, many people's optimal learning style is quite concrete; I believe your first experience with a subject should be example-based, to fix ideas. After all, when you were a kid you played around with numbers long before you defined the integers. There's something to the old Dewey idea of "learning by doing." And I have only seen it tried once in advanced m...
Update see my comment for new thoughts
Topic: Introductory Bayesian Statistics (as distinct from more advanced Bayesian statistics)
Recommendation: Data Analysis: A Bayesian Tutorial by Skilling and Sivia
Why: Sivia's book is well suited for smart people who have not had little or no statistical training. It starts from the basics and covers a lot of important ground. I think it takes the right approach, first doing some simple examples where analytical solutions are available or it is feasible to integrate naively and numerically. Then it teaches into maximum likelihood estimation (MLE), how to do it and why it makes sense from a Bayesian perspective. I think MLE is a very very useful technique, especially so for engineers. I would overall recommend just Part I: The Essentials, I don't think the second half is so useful, except perhaps the MLE extensions chapter. There are better places to learn about MCMC approximation.
Why not other books?
Bayesian Data Analysis by Gelman - Geared more for people who have done statistics before.
Bayesian Statistics by Bolstad - Doesn't cover as much as Sivia's book, most notably doesn't cover MLE. Goes kinda slowly and spends a lot of time on comparin...
Brandon Reinhart used both Sivia's book and Bolstad's book and found (3rd message) Bolstad's book better for those with no stats experience:
For statistics, I recommend An Introduction to Bayesian Statistics by William Bolstad. This is superior to the "Data Analysis" book if you're learning stats from scratch. Both "Data Analysis" and "Bayesian Data Analysis" assume a certain base level of familiarity with the material. The Bolstad book will bootstrap you from almost no familiarity with stats through fairly clear explanations and good supporting exercises.
Nonetheless, it's something you should do with other people. You may not notice what you aren't completely comprehending otherwise. Do the exercises!
Based on these comments, I think I was underestimating inferential distance, and I now change my recommendation. You should read Bolstad's book first (skipping the parts comparing bayesian and frequentist methods unless that's important to you) and then read Sivia's book. If you have experience with statistics you may start with Sivia's book.
Business: The Personal MBA: Master the Art of Business by Josh Kaufman.
I'm the author, so feel free to discount appropriately. However, the entire reason I wrote this book is because I spent years searching for a comprehensive introductory primer on business practice, and I couldn't find one - so I created it.
Business is a critically important subject for rationalists to learn, but most business books are either overly-narrow, shallow in useful content, or overly self-promotional. I've read thousands of them over the past six years, including textbooks.
Business schools typically fragment the topic into several disciplines, with little attempt to integrate them, so textbooks are usually worse than mainstream business books. It's possible to read business books for years (or graduate from business school) without ever forming a clear understanding of what businesses fundamentally are, or how they actually work.
If you're familiar with Charlie Munger's "mental model" approach to learning, you'll recognize the approach of The Personal MBA - identify and master the set of business-related mental models that will actually help you operate a real business successfully.
Because mak...
Wow, Duke - that's a bit harsh.
It's true that the book is not densely written or overly technical - it was created for readers who are relatively new to business, and want to understand what's important as quickly as possible.
Not everyone wants what you want, and not everyone values what you value. For most readers, this is the first book they've ever read about how businesses actually operate. The worst thing I could possibly do is write in a way that sounds and feels like a textbook or academic journal.
I don't know you personally, but from the tone of your comment, it sounds like you're trying to signal that you're too sophisticated for the material. That may be true. Even so, categorical and unqualified statements like "terrible" / "cotton candy" / and "little value to offer" do a disservice to people who are in a better position to learn from this material than you are.
That said, I'll repeat my earlier comment: if you've read another solid, comprehensive primer on general business practice, I'd love to hear about it.
I suppose I can think up a few tomes of eldritch lore that I have found useful (college math specifically):
Calculus:
Recommendation: Differential and Integral Calculus
Author: Richard Courant
Contenders:
Stewart, Calculus: Early Transcendentals: This is a fairly standard textbook for freshman calculus. Mediocre overall.
Morris Kline, Calculus: An Intuitive and Physical Approach: Great book. As advertised, focuses on building intuition. Provides a lot of examples that aren't the usual contrived "applications". This would work well as a companion piece to the recommended text.
Courant, Differential and Integral Calculus (two volumes): One of the few math textbooks that manages to properly explain and motivate things and be rigorous at the same time. You'll find loads of actual applications. There are plenty of side topics for the curious as well as appendices that expand on certain theoretical points. It's quite rigorous, so a companion text might be useful for some readers. There's an updated version edited by Fritz John (Introduction to Calculus and Analysis), but I am unfamiliar with it.
Linear Algebra:
Recommended Text: Linear Algebra
Author: Georgi Shilov
Contenders:
David Lay, L...
I can't help but question this post.
Textbook recommendations are all over. From the old SIAI reading shelf to books individually recommended in articles and threads to wiki pages to here (is this even the first article to try to compile a reading list? I don't think it is.)
Maybe we would be better off adding pages to the LW wiki. So for [[Economics]]
a brief description why economics is important to know, links to relevant LW posts, and then a section == Recommended reading ==
. And so on for all the other subjects here.
Work smarter, not harder!
The problem is that lots of textbook recommendations are not very good. I've been recommended lots of bad books in my life. That's what is unique about this post: it demands that recommendations be given only by people who are fairly well-read on the subject (at least 3 textbooks).
But yes, adding this data to the Wiki would be great.
Textbook recommendations are all over.
Since the parent omitted a link: singinst.org/reading/
Calculus: Spivak's Calculus over Thomas' Calculus and Stewart's Calculus. This is a bit of an unfair fight, because Spivak is an introduction to proof, rigor, and mathematical reasoning disguised as a calculus textbook; but unlike the other two, reading it is actually exciting and meaningful.
Analysis in R^n (not to be confused with Real Analysis and Measure Theory): Strichartz's The Way of Analysis over Rudin's Principles of Mathematical Analysis, Kolmogorov and Fomin's Introduction to Real Analysis (yes, they used the wrong title; they wrote it decades ago). Rudin is a lot of fun if you already know analysis, but Strichartz is a much more intuitive way to learn it in the first place. And after more than a decade, I still have trouble reading Kolmogorov and Fomin.
Real Analysis and Measure Theory (not to be confused with Analysis in R^n): Stein and Shakarchi's Measure Theory, Integration, and Hilbert Spaces over Royden's Real Analysis and Rudin's Real and Complex Analysis. Again, I prefer the one that engages with heuristics and intuitions rather than just proofs.
Partial Differential Equations: Strauss' Partial Differential Equations over Evans' Partial Differential Equations and Ho...
For years, my self-education was stupid and wasteful. I learned by consuming blog posts, Wikipedia articles, classic texts, podcast episodes, popular books, video lectures, peer-reviewed papers, Teaching Company courses, and Cliff's Notes. How inefficient!
I've since discovered that textbooks are usually the quickest and best way to learn new material. That's what they are designed to be, after all. Less Wrong has often recommended the "read textbooks!" method. Make progress by accumulation, not random walks.
But textbooks vary widely in quality. I was forced to read some awful textbooks in college. The ones on American history and sociology were memorably bad, in my case. Other textbooks are exciting, accurate, fair, well-paced, and immediately useful.
What if we could compile a list of the best textbooks on every subject? That would be extremely useful.
Let's do it.
There have been other pages of recommended reading on Less Wrong before (and elsewhere), but this post is unique. Here are the rules:
Rules #2 and #3 are to protect against recommending a bad book that only seems impressive because it's the only book you've read on the subject. Once, a popular author on Less Wrong recommended Bertrand Russell's A History of Western Philosophy to me, but when I noted that it was more polemical and inaccurate than the other major histories of philosophy, he admitted he hadn't really done much other reading in the field, and only liked the book because it was exciting.
I'll start the list with three of my own recommendations...
Subject: History of Western Philosophy
Recommendation: The Great Conversation, 6th edition, by Norman Melchert
Reason: The most popular history of western philosophy is Bertrand Russell's A History of Western Philosophy, which is exciting but also polemical and inaccurate. More accurate but dry and dull is Frederick Copelston's 11-volume A History of Philosophy. Anthony Kenny's recent 4-volume history, collected into one book as A New History of Western Philosophy, is both exciting and accurate, but perhaps too long (1000 pages) and technical for a first read on the history of philosophy. Melchert's textbook, The Great Conversation, is accurate but also the easiest to read, and has the clearest explanations of the important positions and debates, though of course it has its weaknesses (it spends too many pages on ancient Greek mythology but barely mentions Gottlob Frege, the father of analytic philosophy and of the philosophy of language). Melchert's history is also the only one to seriously cover the dominant mode of Anglophone philosophy done today: naturalism (what Melchert calls "physical realism"). Be sure to get the 6th edition, which has major improvements over the 5th edition.
Subject: Cognitive Science
Recommendation: Cognitive Science, by Jose Luis Bermudez
Reason: Jose Luis Bermudez's Cognitive Science: An Introduction to the Science of Mind does an excellent job setting the historical and conceptual context for cognitive science, and draws fairly from all the fields involved in this heavily interdisciplinary science. Bermudez does a good job of making himself invisible, and the explanations here are some of the clearest available. In contrast, Paul Thagard's Mind: Introduction to Cognitive Science skips the context and jumps right into a systematic comparison (by explanatory merit) of the leading theories of mental representation: logic, rules, concepts, analogies, images, and neural networks. The book is only 270 pages long, and is also more idiosyncratic than Bermudez's; for example, Thagard refers to the dominant paradigm in cognitive science as the "computational-representational understanding of mind," which as far as I can tell is used only by him and people drawing from his book. In truth, the term refers to a set of competing theories, for example the computational theory and the representational theory. While not the best place to start, Thagard's book is a decent follow-up to Bermudez's text. Better, though, is Kolak et. al.'s Cognitive Science: An Introduction to Mind and Brain. It contains more information than Bermudez's book, but I prefer Bermudez's flow, organization and content selection. Really, though, both Bermudez and Kolak offer excellent introductions to the field, and Thagard offers a more systematic and narrow investigation that is worth reading after Bermudez and Kolak.
Subject: Introductory Logic for Philosophy
Recommendation: Meaning and Argument by Ernest Lepore
Reason: For years, the standard textbook on logic was Copi's Introduction to Logic, a comprehensive textbook that has chapters on language, definitions, fallacies, deduction, induction, syllogistic logic, symbolic logic, inference, and probability. It spends too much time on methods that are rarely used today, for example Mill's methods of inductive inference. Amazingly, the chapter on probability does not mention Bayes (as of the 11th edition, anyway). Better is the current standard in classrooms: Patrick Hurley's A Concise Introduction to Logic. It has a table at the front of the book that tells you which sections to read depending on whether you want (1) a traditional logic course, (2) a critical reasoning course, or (3) a course on modern formal logic. The single chapter on induction and probability moves too quickly, but is excellent for its length. Peter Smith's An Introduction to Formal Logic instead focuses tightly on the usual methods used by today's philosophers: propositional logic and predicate logic. My favorite in this less comprehensive mode, however, is Ernest Lepore's Meaning and Argument, because it (a) is highly efficient, and (b) focuses not so much on the manipulation of symbols in a formal system but on the arguably trickier matter of translating English sentences into symbols in a formal system in the first place.
I would love to read recommendations from experienced readers on the following subjects: physics, chemistry, biology, psychology, sociology, probability theory, economics, statistics, calculus, decision theory, cognitive biases, artificial intelligence, neuroscience, molecular biochemistry, medicine, epistemology, philosophy of science, meta-ethics, and much more.
Please, post your own recommendations! And, follow the rules.
Recommendations so far (that follow the rules; this list updated 02-25-2017):