Andrew McKnight

Wiki Contributions

Comments

Wouldn't the kind of alignment you'd be able to test behaviorally in a game be unrelated to scalable alignment?

I know this was 3 years ago, but was this disagreement resolved, maybe offline?

Is there reason to believe algorithmic improvements follow an exponential curve? Do you happen to know a good source on this?

I'm tempted to call this a meta-ethical failure. Fatalism, universal moral realism, and just-world intuitions seem to be the underlying implicit hueristics or principals that would cause this "cosmic process" thought-blocker.

I think it's good to go back to this specific quote and think about how it compares to AGI progress.

A difference I think Paul has mentioned before is that Go was not a competitive industry and competitive industries will have smaller capability jumps. Assuming this is true, I also wonder whether the secret sauce for AGI will be within the main competitive target of the AGI industry.

The thing the industry is calling AGI and targeting may end up being a specific style of shallow deployable intelligence when "real" AGI is a different style of "deeper" intelligence (with, say, less economic value at partial stages and therefore relatively unpursued). This would allow a huge jump like AlphaGo in AGI even in a competitive industry targeting AGI.

Both possibilities seem plausible to me and I'd like to hear arguments either way.

von Neumann's design was in full detail, but, iirc, when it was run for the first time (in the 90s) it had a few bugs that needed fixing. I haven't followed Freitas in a long time either but agree that the designs weren't fully spelled out and would have needed iteration.

If we merely lose control of the future and virtually all resources but many of us aren't killed in 30 years, would you consider Eliezer right or wrong?

There is some evidence that complex nanobots could be invented in ones head with a little more IQ and focus because von Neumann designed a mostly functional (but fragile) replicator in a fake simple physics using the brand-new idea of a cellular automata and without a computer and without the idea of DNA. If a slightly smarter von Neumann focused his life on nanobots, could he have produced, for instance, the works of Robert Freitas but in the 1950s, and only on paper?

I do, however, agree it would be helpful to have different words for different styles of AGI but it seems hard to distinguish these AGIs productively when we don't yet know the order of development and which key dimensions of distinction will be worth using as we move forward. (human-level vs super-? shallow vs deep? passive vs active? autonomy-types? tightness of self-improvement? etc). Which dimensions will pragmatically matter?

I think this makes sense because eggs are haploid (already only have 23 chromosomes) but a natural next question is: why are eggs haploid if there is a major incentive to pass more of the 46 chromosomes?

I've been thinking about benefits of "Cognitive Zoning Laws" for AI architecture.

If specific cognitive operations were only performed in designated modules then these modules could have operation-specific tracking, interpreting, validation, rollback, etc. If we could ensure "zone breaches" can't happen (via e.g. proved invariants or more realistically detection and rollback) then we could theoretically stay aware of where all instances of each cognitive operation are happening in the system. For now let's call this cognitive-operation-factored architecture "Zoned AI".

Zoned AI seems helpful in preventing inner optimizers that are within particular modules (but might have little to say about emergent cross-module optimizers) and also would let interpretability techniques focus in on particular sections of the AI (e.g. totally speculating but if we knew where the meta-learning was inside GPT-3 it might just be all over the place and even with interpretability tools it could be hard to understand globally compared to the ability being localized in the network). Gradient descent training schemes break cognitive zoning law by default.

Defining cognitive operations perfectly enough to capture all instances of them is a losing battle. Instead we might (1) allow lots of false negatives and (2) use a behavioral test for detecting them rather than a definition.

To test a single inner piece of a Zoned AI, we create a second Zoned AI that is functional for some task and remove the capacity we want to test from that AI. Then we take the inner piece we are testing for a breach from the first AI, wrap it in a shallow network (a neural net or whatever), and see if the second AI can be made to function by training the shallow network. If the training succeeds, then we have a thing that is sufficiently similar to the disallowed operation, so we have a breach.

Now we don't actually want to check every tiny piece of the AI so instead we train a 3rd system to search for sections that might contain the disallowed ability and to predict whether one exists within the entire first AI, using the 2nd AI only as an expensive check.

Seeing the same abilities cropping up in the wrong place would tell you about the incentives innate to your architecture components and gesture towards new architectures that relieve the incentive. (e.g. If you find planning in your perception then maybe you need to attach the planner in a controlled way to the perception module)

None of this will work at later stages when an AGI can operate on itself but I would hope Cognitive Zoning could help during the crucial phase when we have AGI architecture in our hands but have not yet deployed instances at a scale where they are dangerous.

Thoughts and improvements? I'm sure this isn't a novel idea but has anyone written about it?

Load More