LESSWRONG
LW

1402
closetsolipsist
0010
Message
Dialogue
Subscribe

Posts

Sorted by New

Wikitag Contributions

Comments

Sorted by
Newest
No posts to display.
No wikitag contributions to display.
Diagonalization Fixed Point Exercises
closetsolipsist1y10

Here are my solutions to the first six problems:

1. Recall Cantor’s diagonal argument for the uncountability of the real numbers. Apply the same technique to convince yourself than for any set S, the cardinality of S is less than the cardinality of the power set P(S) (i.e. there is no surjection from S to P(S)).

Solution:

Suppose that f:S→P(S) is surjective. Then take A={s∣s∉f(s)}. Since f is surjective, there existst∈S such that f(t)=A. But then t∈f(t)⇔t∈A⇔t∉f(t), a contradiction.

2. Suppose that a nonempty set T has a function f from T to T which lacks fixed points (i.e. f(x)≠x for all x∈T). Convince yourself that there is no surjection from S to S→T, for any nonempty S. (We will write the set of functions from A to B either as A→B or BA; these are the same.)

Solution:

Suppose that g were such a surjection. Then we may define a function h:S→T by h(s)=(g(s))(s). Now, since g is surjective, there exists a u∈S such that g(u)=f∘h. Passing u as an argument to both sides, we have (g(u))(u)=f(h(u)), so h(u)=f(h(u)), contradicting the fact that f has no fixed points.

3. For nonempty S and T, suppose you are given g:S→TS a surjective function from the set S to the set of functions from S to T, and let f be a function from T to itself. The previous result implies that there exists an x in T such that f(x)=x. Can you use your proof to describe x in terms of f and g?

Solution:

Define h:S→T by h(s)=(g(s))(s). Since g is surjective, there exists u∈S such that g(u)=f∘h. Then take x=h(u). From my proof above, x is a fixed point of f.

4. Given sets A and B, let Comp(A,B) denote the space of total computable functions from A to B. We say that a function from C to Comp(A,B) is computable if and only if the corresponding function f′:C×A→B (given by f′(c,a)=f(c)(a)) is computable. Show that there is no surjective computable function from the set S of all strings to Comp(S,{T,F}).

Solution:

Suppose for the sake of contradiction that f:S→Comp(S,{T,F}) is a surjective computable function. Then the following is computable: g(u)=¬f′(u,u). Since f is surjective, there exists v∈S such that f(v)=g, but then f(v)(v)=g(v)=¬f′(v,v)=¬f(v)(v), a contradiction.

5. Show that the previous result implies that there is no computable function halt(x,y) from S×S→{T,F} which outputs T if and only if the first input is a code for a Turing machine that halts when given the second input.

Suppose for the sake of contradiction that there exists such a computable function halt(x,y). Then define a function f:S→Comp(S,{T,F}) as follows: for any string x, if x is not a code for a Turing Machine, let f(x) be the function sending all strings to T. If x is a code for a Turing machine, let f(x) be the function y↦halt(x,y). I claim this is a surjective computable function from S to Comp(S,{T,F}): to show it is surjective, for any computable function g:S→{T,F}, there is a Turing machine which halts precisely when that function returns T. Letting x be the code for that Turing machine, we then have f(x)=g. It's also computable since we assume halt(x,y) is computable. This contradicts the previous result, so we must have been wrong in our initial assumption.

6. Given topological spaces A and B, let Cont(A,B) be the space with the set of continuous functions from A to B as its underlying set, and with topology such that f:C→Cont(A,B) is continuous if and only if the corresponding function f′:C×A→B (given by f′(c,a)=f(c)(a)) is continuous, assuming such a space exists. Convince yourself that there is no space X which continuously surjects onto Cont(X,S), where S is the circle.

Suppose for the sake of contradiction that for some space X, f:X→Comp(X,S) is a surjective continuous function. Let o:S→S denote the continuous function giving the point on the opposite side of the circle. Then the following is continuous: g(x)=o(f′(x,x)).  Since f is surjective, there exists y∈X such that f(y)=g, but then f(y)(y)=g(y)=o(f′(y,y))=o(f(y)(y)), a contradiction.

Reply