LESSWRONG
LW

2017
dogirardo
3010
Message
Dialogue
Subscribe

Posts

Sorted by New

Wikitag Contributions

Comments

Sorted by
Newest
No posts to display.
No wikitag contributions to display.
Causal Inference Sequence Part 1: Basic Terminology and the Assumptions of Causal Inference
dogirardo11y30

The A=a notation always bugged me too. I like the above notation because it betrays morphism composition.

If we consider random variables as measure(able) spaces and conditional probabilities P(B | A) as stochastic maps B -> P(A), then every element 'a' of (a countably generated) A induces a point measure -> A giving probability 1 to that event. This is the map named by do(a). But since we're composing maps, not elements, we can use an element a unambiguously to mean its point measure. Then a series of measures separated by ',' give the product measure. In the above example, let a : A (implicitly, -> A), a' : B (implicitly, -> B), M : B ~> C, Y : (A,C) ~> D, then Y(a,M(a')) is a stochastic map ~> D given by composition

EDIT: How do I ascii art?

All of this is a fancy way of saying that "potential outcome" notation conveys exactly the right information to make probabilities behave nicely.

Reply