LESSWRONG
LW

FjolleJagt
6Ω2030
Message
Dialogue
Subscribe

Posts

Sorted by New

Wikitag Contributions

Comments

Sorted by
Newest
No wikitag contributions to display.
How do finite factored sets compare with phase space?
Answer by FjolleJagtDec 06, 202231

A finite factored set is "just" a set X with a specific choice of decomposition as a product of sets X1×…×Xn. I'm not sure what definition of phase space you're using, but for a sufficiently general definition of dynamical system (e.g. https://en.wikipedia.org/wiki/Dynamical_system#Formal_definition) I don't think that the phase space necessarily has coordinates in this way. The position / momentum phase space example is a special case, where your phase space happens to look like a product of copies of the real numbers, which is then getting back to the "factored" part of a finite factored set. I'm not convinced that there's a deep connection here, though am not very familiar with either concept so could easily be missing something here!

Reply
Finite Factored Sets
FjolleJagt4yΩ130

Thanks, that makes sense! Could you say a little about why the weak union axiom holds? I've been struggling to prove that from your definitions. I was hoping that hF(X|z,w)⊆hF(X|z) would hold, but I don't think that hF(X|z) satisfies the second condition in the definition of conditional history for hF(X|z,w).

Reply
Finite Factored Sets
FjolleJagt4yΩ130

I'm confused by the definition of conditional history, because it doesn't seem to be a generalisation of history. I would expect hF(X|∅)=hF(X), but both of the conditions in the definition of hF(X|∅) are vacuously true if E=∅. This is independent of what H is, so hF(X|∅)=∅. Am I missing something?

Reply
No posts to display.