Contra papers claiming superhuman AI forecasting
[Conflict of interest disclaimer: We are FutureSearch, a company working on AI-powered forecasting and other types of quantitative reasoning. If thin LLM wrappers could achieve superhuman forecasting performance, this would obsolete a lot of our work.] Widespread, misleading claims about AI forecasting Recently we have seen a number of papers – (Schoenegger et al., 2024, Halawi et al., 2024, Phan et al., 2024, Hsieh et al., 2024) – with claims that boil down to “we built an LLM-powered forecaster that rivals human forecasters or even shows superhuman performance”. These papers do not communicate their results carefully enough, shaping public perception in inaccurate and misleading ways. Some examples of public discourse: Ethan Mollick (>200k followers) tweeted the following about the paper Wisdom of the Silicon Crowd: LLM Ensemble Prediction Capabilities Rival Human Crowd Accuracy by Schoenegger et al.: A post on Marginal Revolution with the title and abstract of the paper Approaching Human-Level Forecasting with Language Models by Halawi et al. elicits responses like * "This is something that humans are notably terrible at, even if they're paid to do it. No surprise that LLMs can match us." * "+1 The aggregate human success rate is a pretty low bar" A Twitter thread with >500k views on LLMs Are Superhuman Forecasters by Phan et al. claiming that “AI […] can predict the future at a superhuman level” had more than half a million views within two days of being published. The number of such papers on AI forecasting, and the vast amount of traffic on misleading claims, makes AI forecasting a uniquely misunderstood area of AI progress. And it’s one that matters. What does human-level or superhuman forecasting mean? "Human-level" or "superhuman" is a hard-to-define concept. In an academic context, we need to work with a reasonable operationalization to compare the skill of an AI forecaster with that of humans. One reasonable and practical definition of a sup
