I lurk and tag stuff.


Sorted by New

Wiki Contributions


I think ALWs are already more of a "realist" cause than a doomer cause. To doomers, they're a distraction - a superintelligence can kill you with or without them.

ALWs also seem to be held to an unrealistic standard compared to existing weapons. With present-day technology, they'll probably hit the wrong target more often than human-piloted drones. But will they hit the wrong target more often than landmines, cluster munitions, and over-the-horizon unguided artillery barrages, all of which are being used in Ukraine right now?

The Huggingface deep RL course came out last year. It includes theory sections, algorithm implementation exercises, and sections on various RL libraries that are out there. I went through it as it came out, and I found it helpful.

FYI all the links to images hosted on your blog are broken in the LW version.

Answer by MulticoreJun 08, 20234428

You are right that by default prediction markets do not generate money, and this can mean traders have little incentive to trade.

Sometimes this doesn't even matter. Sports betting is very popular even though it's usually negative sum.

Otherwise, trading could be stimulated by having someone who wants to know the answer to a question provide a subsidy to the market on that question, effectively paying traders to reveal their information. The subsidy can take the form of a bot that bets at suboptimal prices, or a cash prize for the best performing trader, or many other things.

Alternately, there could be traders who want shares of YES or NO in a market as a hedge against that outcome negatively affecting their life or business, who will buy even if the EV is negative, and other traders can make money off them.

  • What are these AIs going to do that is immensely useful but not at all dangerous? A lot of useful capabilities that people want are adjacent to danger. Tool AIs Want to be Agent AIs.
  • If two of your AIs would be dangerous when combined, clearly you can't make them publicly available, or someone would combine them. If your publicly-available AI is dangerous if someone wraps it with a shell script, someone will create that shell script (see AutoGPT). If no one but a select few can use your AI, that limits its usefulness.
  • An AI ban that stops dangerous AI might be possible. An AI ban that allows development of extremely powerful systems but has exactly the right safeguard requirements to render those systems non-dangerous seems impossible.

When people calculate utility they often use exponential discounting over time. If for example your discount factor is .99 per year, it means that getting something in one year is only 99% as good as getting it now, getting it in two years is only 99% as good as getting it in one year, etc. Getting it in 100 years would be discounted to .99^100~=36% of the value of getting it now.

The sharp left turn is not some crazy theoretical construct that comes out of strange math. It is the logical and correct strategy of a wide variety of entities, and also we see it all the time.

I think you mean Treacherous Turn, not Sharp Left Turn.

Sharp Left Turn isn't a strategy, it's just an AI that's aligned in some training domains being capable but not aligned in new ones.

This post is tagged with some wiki-only tags. (If you click through to the tag page, you won't see a list of posts.) Usually it's not even possible to apply those. Is there an exception for when creating a post?

Based on my incomplete understanding of transformers:

A transformer does its computation on the entire sequence of tokens at once, and ends up predicting the next token for each token in the sequence.

At each layer, the attention mechanism gives the stream for each token the ability to look at the previous layer's output for other token before it in the sequence.

The stream for each token doesn't know if it's the last in the sequence (and thus that its next-token prediction is the "main" prediction), or anything about the tokens that come after it.

So each token's stream has two tasks in training: predict the next token, and generate the information that later tokens will use to predict their next tokens. 

That information could take many different forms, but in some cases it could look like a "plan" (a prediction about the large-scale structure of the piece of writing that begins with the observed sequence so far from this token-stream's point of view).

Load More