Sorted by New

Wiki Contributions

Well, of course things may not work out exactly like an Oprah special. But I think that even if there is anger/bitterness/backlash at first, things will, in time, work out and his family will accept him, provided he handles the situation with care (which I predict he will) and provided that his family is composed of people who are somewhere in the vicinity of reasonableness. They may not be. But permanent disownment by a family for purely religious reasons is rare, in my experience. Don't get me wrong: it happens. But as someone who grew up and lives in the bible belt, it is not common.

Hi Giles,

I think Occam's razor is logically valid in the sense that, although it doesn't always provide the correct answer, it is certain that it will probably provide the correct answer. Also, I'm not sure if I understand your point about conjunction. I've always understood "do not multiply entities beyond necessity" to mean that, all else held equal, you ought to make the fewest number of conjectures/assumptions/hypotheses possible.

Well, it is not self-contradictory, for one thing. For another thing, every time a new postulate or assumption is added to a theory we are necessarily lowering the prior probability because that postulate/assumption always has some chance of being wrong.

That's inspiring, and beautiful. You should be very, very proud of your rationality, adherance to the Socratic method, and your determination to create and maintain a happy marriage and beautiful life. I know you will achieve your goals. You deserve to.

Sure, I'll read it. Just tell me how to find it!

Well, of course one cannot logically and absolutely deduce much from raw data. But with some logically valid inferential tools in our hands (Occam's razor, Bayes' Theorem, Induction) we can probabilistically derive conclusions.

This, I think, is just one symptom of a more general problem with scientists: they don't emphasize rigorous logic as much as they should. Science, after all, is not only about (a) observation but about (b) making logical inferences from observation. Scientists need to take (b) far more seriously (not that all don't, but many do not). You've heard the old saying "Scientists make poor philosophers." It's true (or at least, true more often than it should be). That has to change. Scientists ought to be amongst the best philosophers in the world, precisely because they ought to be masters of logic.

It seems to me that the correct reasoning behind Occam's razor is that the more assumptions that a hypothesis must make the lower the prior probability must be. Likewise, the more specific a hypothesis is, the lower the prior probability. For example, the prior probability that "a red F150 will pass by my house within the next five minutes" is lower than the prior probability that "a motor vehicle of some sort will pass by my house within the next five minutes" for reasons that I think are fairly self-explanatory.