polytope
polytope has not written any posts yet.

polytope has not written any posts yet.

I like that post too but it occurs to me that it hinges on the process by which the person chooses how most beneficially to be biased being the person themselves unbiasedly (or less-biasedly) evaluating the alternatives. In which case you then get the tension where that part of that person does actually know the truth and so on.
In particular, it seems to me that it's still possible to have the choice made for you to tend to have some kinds of false beliefs in a way that predictably correlates with benefitting you (although not necessarily in the form making you happy). Speaking, of course, of natural evolution equipping people with a... (read more)
I think in dictionaries one tends to find the "morally/legally bound" definition of "obligation" emphasized, and only sometimes but not always a definition closer to the usage in the OP, so prescriptively, in the sense of linguistic prescriptivism, this criticism may make sense. But practically/descriptively, I do believe among many English-speaking populations (including at least the one that contains me) currently "obligation" can also be used the way it is in the OP. For me at least the usage of "obligation" did not pose any speed bumps in understanding the broader meaning of the post, being unremarkable enough that the conscious idea that the word's usage might not have matched various common... (read more)
It may depend on the RL algorithm, but I think would not expect most RL to have this issue to first order if the RL algorithm is producing its rollouts by sampling from the full untruncated distribution at temperature 1.
The issue observed by the OP is a consequence of the fact that typically if you are doing anything other than untruncated sampling at temperature 1, then your sampling is not invariant between, e.g. "choose one of three options: a, b, or c" and "choose one of two options: a, or (choose one of two options: b or c)".
However many typical on-policy RL algorithms fundamentally derive from sampling/approximation of theorems/algorithms where running one... (read more)
It's interesting to note the variation in "personalities" and apparent expression of different emotions despite identical or very similar circumstances.
Pretraining gives models that predict every different kind of text on the internet, and so are very much simulators that learn to instantiate every kind of persona or text-generating process in that distribution, rather than being a single consistent agent. Subsequent RLHF and other training presumably vastly concentrates the distribution of personas and processes instantiated by the model on to a particular narrow cloud of personas that self-identifies as an AI with a particular name, has certain capabilities and quirks depending on that training, has certain claimed self-knowledge of capabilities (but where there isn't actually very strong of a force tying the claimed self-knowledge to the actual capabilities), etc. But even narrowed, it's interesting to still see significant variation within the remaining distribution of personas that gets sampled each new conversation, depending on the context.
I agree with DAL that "move 37" among the lesswrong-ish social circle has maybe become a handle for a concept where the move itself isn't the best exemplar of that concept in reality, although I think it's not a terrible exemplar either.
It was surprising to pro commentators at the time. People tended to conceptualize bots as being brute-force engines with human-engineered heuristics that just calculate them out to a massive degree (because historically that's what they were in Chess), rather than as self-learning entities that excel in sensing vibes and intuition and holistic judgment. As a Go player, it looks to me like the kind of move that you never find just... (read 1000 more words →)
One thing that's worth keeping in mind with exercises like this is that while you can do this in various ways and get some answers, the answers you get may depend nontrivially on how you construct the intermediate ladder of opponents.
For example, attempts to calibrate human and computer Elo ratings scales often do place top computers around the 3500ish area, and one of the other answers given has indicated by a particular ladder of intermediates that random would then be at 400-500 Elo given that. But there are also human players who are genuinely rated 400-500 Elo on servers whose Elo ratings are also approximately transitively self-consistent within that server. These players... (read 702 more words →)
Circling back to this with a thing I was thinking about - suppose one wanted to figure out just one additional degree of freedom to the Elo rating a player had (at a given point in time, if you also allow evolution over time) that would add as much improvement as possible. Almost certainly you need more dimensions than that to properly fit real idiosyncratic nonlinearities/nontransitivities (i.e. if you had a playing population with specific pairs of players that were especially strong/weak only against specific other players, or cycles of players where A beats B beats C beats A, etc), but if you just wanted to work out what the "second principal... (read 426 more words →)
I might be misunderstanding, but it looks to me like your proposed extension is essentially just the Elo model with some degrees of freedom that don't yet appear to matter?
The dot product has the property that <theta_A-theta_B,w> = <theta_A,w> - <theta_B,w>, so the only thing that matters is the <theta_P,w> for each player P, which is just a single scalar. So we are on a one-dimensional scale again where predictions are based on taking a sigmoid of the difference between a single scalar associated with each player.
As far as I can tell, the way that such a model could still be a nontrivial extension of Elo would be if you posited w... (read more)
I assume you're familiar with the case of the parallel postulate in classical geometry as being independent of other axioms? Where that independence corresponds with the existence of spherical/hyperbolic geometries (i.e. actual models in which the axiom is false) versus normal flat Euclidean geometry (i.e. actual models in which it is true).
To me, this is a clear example of there being no such thing as an "objective" truth about the the validity of the parallel postulate - you are entirely free to assume either it or incompatible alternatives. You end up with equally valid theories, it's just those theories are applicable to different models, and those models are each useful in different... (read more)
I do think there is some fun interesting detail in defining "optimal" here. Consider the following three players:
- A - Among all moves whose minimax value is maximal, chooses one uniformly at random (i.e. if there is at least one winning move, they choose one uniformly, else if there is at least one drawing move, they choose one uniformly, else they choose among losing moves uniformly).
- B - Among all moves whose minimax value is maximal, chooses one uniformly at random, but in cases of winning/losing, restricting to only moves that win as fast as possible or lose as slowly as possible (i.e. if there is at least one winning move, they choose one
... (read 496 more words →)