Quantum Tesseract
Quantum Tesseract has not written any posts yet.

Quantum Tesseract has not written any posts yet.

It becomes a lot more obvious when you consider two factors; 1, that every agent wants to maximize its utility, and 2, that no split will be agreed to if it makes one agent worse off for participating in the trade than their bull action. Consider our simplest factory case: a factory that requires 1 owner to supply capital and one worker to provide labor. Since both are required to obtain the output, you split the gains from trade by taking the income from the factory, paying out the costs to bring both agents to net 0 from agreeing to the trade (ie, maintenance on the capital, taxes, insurance against work injuries,... (read 416 more words →)
Only the second owner to join adds any value, so they get the same slice as the sole owner in the first example, ie, half. Since each owner has a 50% chance of being the second owner, they each get 25%. With 3 owners it’s 1/3*.5=1/6. Etc. the math works out very neatly this way.
You’re right, this was less clear than I intended it to be; my apologies. The proposal I offer here is that since the first owner to join offers nothing, they aren’t included in the calculation; you just run them as though the second owner was the only owner, and get the same result for the value of the second owner as you did for the sole owner the first time. This has the advantage of being very computationally simple and gets you the same results as the full calculation for this case. It’s a specific case of a broader way you can simplify shapely calculations, where when the payout can... (read more)