LESSWRONG
LW

1416
stanleywinford
0010
Message
Dialogue
Subscribe

Posts

Sorted by New

Wikitag Contributions

Comments

Sorted by
Newest
No wikitag contributions to display.
Triple or nothing paradox
stanleywinford9y00

Suppose that at the beginning of the game, you decide to play no more than N turns. If you lose all your money by then, oh well; if you don't, you call it a day and go home.

  • After 1 turn, there's a 1/2 chance that you have 3 dollars; expected value = 3/2
  • 2 turns, 1/4 chance that you have 9 dollars; expected value = (3/2)^2
  • 3 turns, 1/8 chance of 27 dollars; E = (3/2)^3
  • 4 turns, 1/16 chance of 81 dollars; E=(3/2)^4
  • ...
  • N turns, 1/2^N chance of 3^N dollars; E=(3/2)^N

So the longer you decide to play, the higher your expected value is. But is a 1/2^100 chance of winning 3^100 dollars really better than a 1/2 chance of winning 3 dollars? Just because the expected value is higher, doesn't mean that you should keep playing. It doesn't matter how high the expected value is if a 1/2^100 probability event is unlikely to happen in the entire lifetime of the Universe.

Reply
No posts to display.