Good observation, thanks for sharing.
One possible reason is that I've included more organizations in this updated post and this would raise many estimates.
Another reason is that in the old post, I used a linear model that assumed that an organization started with 1 FTE when founded and linearly increased until the current number (example: an organization has 10 FTEs in 2025 and was founded in 2015. Assume 1 FTE in 2015, 2 FTEs in 2016 ... 10 in 2025).
The new model is simpler and just assumes the current number for all years (e.g. 10 in 2015 and 10 in 2025) so it's estimates for earlier years are higher than the previous model. See my response to Daniel above.
I think it's hard to pick a reference class for the field of AI safety because the number of FTEs working on comparable fields or projects can vary widely.
Two extremes examples:
- Apollo Program: ~400,000 FTEs
- Law of Universal Gravitation: 1 FTE (Newton)
Here are some historical challenges which seem comparable to AI safety since they are technical, focused on a specific challenge, and relatively recent [1]:
I think these projects show that it's possible to make progress on major technical problems with a few thousand talented and focused people.
These estimates were produced using ChatGPT with web search.
I'm pretty sure that's just a mistake. Thanks for spotting it! I'll remove the duplicated row.
For each organization, I estimated the number of FTEs by looking at the team members page, LinkedIn, and what kinds of outputs have been produced by the organization and who is associated with them. Then the final estimate is an intuitive guess based on this information.
Thanks for your helpful feedback Daniel. I agree that the estimate for 2015 (~50 FTEs) is too high. The reason why is that the simple model assumes that the number of FTEs is constant over time as soon as the organization is founded.
For example, the FTE value associated with Google DeepMind is 30 today and the company was founded in 2010 so the value back then is probably too high.
Perhaps a more realistic model would assume that the organization has 1 FTE when founded and linearly increases. Though this model would be inaccurate for organizations that grow rapidly and then plateau in size after being founded.
Thanks for the post. It covers an important debate: whether mechanistic interpretability is worth pursuing as a path towards safer AI. The post is logical and makes several good points but I find it's style too formal for LessWrong and it could be rewritten to be more readable.
Thank you for taking the time to comment and for pointing out some errors in the post! Your attention to detail is impressive. I updated the post to reflect your feedback:
Good luck with the rest of the ARENA curriculum! Let me know if you come across anything else.
While I disagree with a lot of this post, I thought it was interesting and I don't think it should have negative karma.
I haven't heard anything about RULER on LessWrong yet:
RULER (Relative Universal LLM-Elicited Rewards) eliminates the need for hand-crafted reward functions by using an LLM-as-judge to automatically score agent trajectories. Simply define your task in the system prompt, and RULER handles the rest—no labeled data, expert feedback, or reward engineering required.
✨ Key Benefits:
- 2-3x faster development - Skip reward function engineering entirely
- General-purpose - Works across any task without modification
- Strong performance - Matches or exceeds hand-crafted rewards in 3/4 benchmarks
- Easy integration - Drop-in replacement for manual reward functions
Apparently it allows LLM agents to learn from experience and significantly improves reliability.
These talks are fascinating. Thanks for sharing.
That's a good question. One approach I took is to look at the research agendas and outputs (e.g. Google DeepMinds AI safety research agenda) and estimate the number of FTEs based on those.
I would say that I'm including teams that are working full-time on advancing technical AI safety or interpretability (e.g. the GDM Mechanistic Interpretability Team).
To the best of my knowledge, there are a few teams like that at Google DeepMind and Anthropic though I could be underestimating given that these organizations have been growing rapidly over the past few years.
A weakness of this approach is that there could be large numbers of staff who sometimes work on AI safety and significantly increase the effective number of AI safety FTEs at the organization.