CEO at Redwood Research.
AI safety is a highly collaborative field--almost all the points I make were either explained to me by someone else, or developed in conversation with other people. I'm saying this here because it would feel repetitive to say "these ideas were developed in collaboration with various people" in all my comments, but I want to have it on the record that the ideas I present were almost entirely not developed by me in isolation.
Most of the problems you discussed here more easily permit hacky solutions than scheming does.
IMO the main argument for focusing on scheming risk is that scheming is the main plausible source of catastrophic risk from the first AIs that either pose substantial misalignment risk or that are extremely useful (as I discuss here). These other problems all seem like they require the models to be way smarter in order for them to be a big problem. Though as I said here, I'm excited for work on some non-scheming misalignment risks.
Another effect here is that the AI companies often don't want to be as reckless as I am, e.g. letting agents run amok on my machines.
Of course AI company employees have the most hands-on experience
FWIW I am not sure this is right--most AI company employees work on things other than "try to get as much work as possible from current AI systems, and understand the trajectory of how useful the AIs will be". E.g. I think I have more personal experience with running AI agents than people at AI companies who don't actively work on AI agents.
There are some people at AI companies who work on AI agents that use non-public models, and those people are ahead of the curve. But that's a minority.
I also have most of these regrets when I think about my work in 2022.
Thanks for bringing this up!
I need to get around to writing up the connection between PVGs and AI control. There's definitely a lot of overlap, but the formalisms are fairly different and the protocols can't always be directly transferred from one to the other.
There are a few AI control projects in the works that make the connection between AI control and PVGs more explicitly.
EDIT: Oh actually @Ansh Radhakrishnan and I already wrote up some stuff about this, see here.
Yeah, if you handle scheming, you solve all my safety problems, but not the final bullet point of "models fail to live up to their potential" problems.
Work that I’ve done on techniques for mitigating misalignment risk often makes a number of conservative assumptions about the capabilities of the AIs we’re trying to control. (E.g. the original AI control paper, Adaptive Deployment of Untrusted LLMs Reduces Distributed Threats, How to prevent collusion when using untrusted models to monitor each other.) For example:
But I don’t think situations where all these assumptions hold are the majority of risk from AI misalignment. Other sources of risk from misalignment (broadly construed):
the latter is in the list
This problem seems important (e.g. it's my last bullet here). It seems to me much easier to handle, because if this problem is present, we ought to be able to detect its presence by using AIs to do research on other subjects that we already know a lot about (e.g. the string theory analogy here). Scheming is the only reason why the model would try to make it hard for us to notice that this problem is present.