Was a philosophy PhD student, left to work at AI Impacts, then Center on Long-Term Risk, then OpenAI. Quit OpenAI due to losing confidence that it would behave responsibly around the time of AGI. Now executive director of the AI Futures Project. I subscribe to Crocker's Rules and am especially interested to hear unsolicited constructive criticism. http://sl4.org/crocker.html
Some of my favorite memes:
(by Rob Wiblin)
(xkcd)
My EA Journey, depicted on the whiteboard at CLR:
(h/t Scott Alexander)
Safety and alignment are AI capabilities
I think I see what you are saying here but I just want to flag this is a nonstandard use of terms. I think the standard terminology would contrast capabilities and propensities; 'can it do the thing, if it tried' vs. 'would it ever try.' And alignment is about propensity (though safety is about both).
Thanks for taking the time to think and write about this important topic!
Here are some point-by-point comments as I read:
(Though I suspect translating these technical capabilities to the economic and societal impact we associate with AGI will take significantly longer.)
I think it'll take an additional 0 to 5 years roughly. More importantly though, I think that the point to intervene on -- the time when the most important decisions are being made -- is right around the time of AGI. By the time you have ASI, and certainly by the time you are deploying ASI into the economy, you've probably fallen into one of the two stable attractor states I describe here. Which one you fall into depends on choices made earlier, e.g. how much alignment talent you bring into the project, the extent to which that talent is optimistic vs. appropriately paranoid, the time you give them to let them cook with the models, the resources you give them (% of total compute, say in overall design strategy), etc.
This assumes that our future AGIs and ASIs will be, to a significant extent, scaled-up versions of our current models. On the one hand, this is good news, since it means our learnings from current models are relevant for more powerful ones, and we can develop and evaluate safety techniques using them. On the other hand, this makes me doubt that safety approaches that do not show signs of working for our current models will be successful for future AIs.
I agree that future AGIs and ASIs will be to a significant extent scaled up versions of current models (at least at first; I expect the intelligence explosion to rapidly lead to additional innovations and paradigm shifts). I'm not sure what you are saying with the other sentences. Sometimes when people talk about current alignment techniques working, what they mean is 'causes current models to be better at refusals and jailbreak resistance' which IMO is a tangentially related but importantly different problem from the core problem(s) we need to solve in order to end up in the good attractor state. After all, you could probably make massive progress on refusals and jailbreaks simply by making the models smarter, without influencing their goals/values/principles at all.
Oh wait I just remembered I can comment directly on the text with a bunch of little comments instead of making one big comment here -- I'll switch to that henceforth.
Cheers!
Thanks this is helpful. Is MONA basically "Let's ONLY use process-based feedback, no outcome-based feedback?"
Another objection: If this works for capabilities, why haven't the corporations done it already? It seems like it should be a super scalable way to make a computer-using agent work.
Interesting stuff! Could you please sketch out what it would look like to use MONA for a general-purpose computer-using AI agent? Such as what the first AGI systems might look like?
If I understand correctly (and I don't think I do, which is why I'm asking) MONA in this setting would look something like:
Have our baby agent do lots of stuff on the computer. At each step, reward it based on how good its action looks to some supervisor-process. The supervisor-process doesn't get to see the actual consequences of the action, it just gets to e.g. do some CoT to speculate about whether the action is going to be good. So maybe the training run looks something like: 10T tokens of 1T 'basic actions in the environment' and then for each of those 1T 'basic actions' there's 10,000 tokens of CoT where three models (for, against, and judge) debate how good the action is given that context. And then the reward for the basic agent is straighforwardly based on the evaluations the judge gives.
Problem: Won't this training run basically hack the judges, and produce actions that look good to the judges but aren't actually useful for accomplishing tasks in the real world? (Maybe the idea is that above a certain level of basic capability, that won't be true? Also maybe we can do something like IDA where the judges are copies of the agent that get to think longer, and so as the agent improves, so do they?)
Here is a brainstorm of the big problems that remain once we successfully get into the first attractor state:
Yep seems right to me. Bravo!
Interesting, thanks for this. Hmmm. I'm not sure this distinction between internally modelling the whole problem vs. acting in feedback loops is helpful -- won't the AIs almost certainly be modelling the whole problem, once they reach a level of general competence not much higher than what they have now? They are pretty situationally aware already.
I'm curious whether these results are sensitive to how big the training runs are. Here's a conjecture:
Early in RL-training (or SFT), the model is mostly 'playing a role' grabbed from the library of tropes/roles/etc. it learned from pretraining. So if it read lots of docs about how AIs such as itself tend to reward-hack, it'll reward-hack. And if it read lots of docs about how AIs such as itself tend to be benevolent angels, it'll be a stereotypical benevolent angel.
But if you were to scale up the RL training a lot, then the initial conditions would matter less, and the long-run incentives/pressures/etc. of the RL environment would matter more. In the limit, it wouldn't matter what happened in pretraining, the end result would be the same.
A contrary conjecture would be that there is a long-lasting 'lock in' or 'value crystallization' effect, whereby tropes/roles/etc. picked up from pretraining end up being sticky for many OOMs of RL scaling. (Vaguely analogous to how the religion you get taught as a child does seem to 'stick' throughout adulthood)
Thoughts?
Brief intro/overview of the technical AGI alignment problem as I see it:
To a first approximation, there are two stable attractor states that an AGI project, and perhaps humanity more generally, can end up in, as weak AGI systems become stronger towards superintelligence, and as more and more of the R&D process – and the datacenter security system, and the strategic advice on which the project depends – is handed over to smarter and smarter AIs.
In the first attractor state, the AIs are aligned to their human principals and becoming more aligned day by day thanks to applying their labor and intelligence to improve their alignment. The humans’ understanding of, and control over, what’s happening is high and getting higher.
In the second attractor state, the humans think they are in the first attractor state, but are mistaken: Instead, the AIs are pretending to be aligned, and are growing in power and subverting the system day by day, even as (and partly because) the human principals are coming to trust them more and more. The humans’ understanding of, and control over, what’s happening is low and getting lower. The humans may eventually realize what’s going on, but only when it’s too late – only when the AIs don’t feel the need to pretend anymore.
(One can imagine alternatives – e.g. the AIs are misaligned but the humans know this and are deploying them anyway, perhaps with control-based safeguards; or maybe the AIs are aligned but have chosen to deceive the humans and/or wrest control from them, but that’s OK because the situation calls for it somehow. But they seem less likely than the above, and also more unstable.)
Which attractor state is more likely, if the relevant events happen around 2027? I don’t know, but here are some considerations:
I do agree with this, but I think that there are certain more specific failure modes that are especially important -- they are especially bad if we run into them, but if we can avoid them, then we are in a decent position to solve all the other problems. I'm thinking primarily of the failure mode where your AI is pretending to be aligned instead of actually aligned. This failure mode can arise fairly easily if (a) you don't have the interpretability tools to reliably tell the difference, and (b) inductive biases favor something other than the goals/principles you are trying to train in OR your training process is sufficiently imperfect that the AI can score higher by being misaligned than by being aligned. And both a and b seem like they are plausibly true now and will plausibly be true for the next few years. (For more on this, see this old report and this recent experimental result) If we can avoid this failure mode, we can stay in the regime where iterative development works and figure out how to align our AIs better & then start using them to do lots of intellectual work to solve all the other problems one by one in rapid succession. (The good attractor state)