Joseph Bloom

Wiki Contributions

Comments

Sorted by

Thanks for posting this! I've had a lot of conversations with people lately about OthelloGPT and I think it's been useful for creating consensus about what we expect sparse autoencoders to recover in language models. 

Maybe I missed it but:

  • What is the performance of the model when the SAE output is used in place of the activations?
  • What is the L0? You say 12% of features active so I assume that means 122 features are active.This seems plausibly like it could be too dense (though it's hard to say, I don't have strong intuitions here). It would be preferable to have a sweep where you have varying L0's, but similar explained variance. The sparsity is important since that's where the interpretability is coming from.  One thing worth plotting might be the feature activation density of your SAE features as compares to the feature activation density of the probes (on a feature density histogram). I predict you will have features that are too sparse to match your probe directions 1:1 (apologies if you address this and I missed this). 
  • In particular, can you point to predictions (maybe in the early game) where your model is effectively perfect and where it is also perfect with the SAE output in place of the activations at some layer? I think this is important to quantify as I don't think we have a good understanding of the relationship between explained variance of the SAE and model performance and so it's not clear what counts as a "good enough" SAE. 

I think a number of people expected SAEs trained on OthelloGPT to recover directions which aligned with the mine/their probe directions, though my personal opinion was that besides "this square is a legal move", it isn't clear that we should expect features to act as classifiers over the board state in the same way that probes do. 

This reflects several intuitions:

  1. At a high level, you don't get to pick the ontology. SAEs are exciting because they are unsupervised and can show us results we didn't expect. On simple toy models, they do recover true features, and with those maybe we know the "true ontology" on some level. I think it's a stretch to extend the same reasoning to OthelloGPT just because information salient to us is linearly probe-able. 
  2. Just because information is linearly probeable, doesn't mean it should be recovered by sparse autoencoders. To expect this, we'd have to have stronger priors over the underlying algorithm used by OthelloGPT. Sure, it must us representations which enable it to make predictions up to the quality it predicts, but there's likely a large space of concepts it could represent. For example, information could be represented by the model in a local or semi-local code or deep in superposition. Since the SAE is trying to detect representations in the model, our beliefs about the underlying algorithm should inform our expectations of what it should recover, and since we don't have a good description of the circuits in OthelloGPT, we should be more uncertain about what the SAE should find. 
  3. Separately, it's clear that sparse autoencoders should be biased toward local codes over semi-local / compositional codes due to the L1 sparsity penalty on activations. This means that even if we were sure that the model represented information in a particular way, it seems likely the SAE would create representations for variables like (A and B) and (A and B') in place of A even if the model represents A. However, the exciting thing about this intuition is it makes a very testable prediction about combinations of features likely combining to be effective classifiers over the board state. I'd be very excited to see an attempt to train neuron-in-a-haystack style sparse probes over SAE features in OthelloGPT for this reason.

Some other feedback:

  • Positive: I think this post was really well written and while I haven't read it in more detail, I'm a huge fan of how much detail you provided and think this is great. 
  • Positive: I think this is a great candidate for study and I'm very interested in getting "gold-standard" results on SAEs for OthelloGPT. When Andy and I trained them, we found they could train in about 10 minutes making them a plausible candidate for regular / consistent methods benchmarking. Fast iteration is valuable. 
  • Negative: I found your bolded claims in the introduction jarring. In particular "This demonstrates that current techniques for sparse autoencoders may fail to find a large majority of the interesting, interpretable features in a language model". I think this is overclaiming in the sense that OthelloGPT is not toy-enough, nor do we understand it well enough to know that SAEs have failed here, so much as they aren't recovering what you expect. Moreover, I think it would best to hold-off on proposing solutions here (in the sense that trying to map directly from your results to the viability of the technique encourages us to think about arguments for / against SAEs rather than asking, what do SAEs actually recover, how do neural networks actually work and what's the relationship between the two).
  • Negative: I'm quite concerned that tieing the encoder / decoder weights and not having a decoder output bias results in worse SAEs. I've found the decoder bias initialization to have a big effect on performance (sometimes) and so by extension whether or not it's there seems likely to matter. Would be interested to see you follow up on this. 

Oh, and maybe you saw this already but an academic group put out this related work: https://arxiv.org/abs/2402.12201  I don't think they quantify the proportion of probe directions they recover, but they do indicate recovery of all types of features that been previously probed for. Likely worth a read if you haven't seen it. 

Cool paper. I think the semantic similarity result is particularly interesting.

As I understand it you've got a circuit  that wants to calculate something like Sim(A,B), where A and B might have many "senses" aka: features but the Sim might not be a linear function of each of thes Sims across all senses/features. 

So for example, there are senses in which "Berkeley" and "California" are geographically related, and there might be a few other senses in which they are semantically related but probably none that really matter for copy suppression. For this reason wouldn't expect the tokens of each of to have cosine similarity that is predictive of the copy suppression score.  This would only happen for really "mono-semantic tokens" that have only one sense (maybe you could test that). 

Moreover, there are also tokens which you might want to ignore when doing copy suppression (speculatively). Eg: very common words or punctuations (the/and/etc). 

I'd be interested if you have use something like SAE's to decompose the tokens into the underlying feature/s present at different intensities in each of these tokens (or the activations prior to the key/query projections). Follow up experiments could attempt to determine whether copy suppression could be better understood when the semantic subspaces are known. Some things that might be cool here:
- Show that some features are mapped to the null space of keys/queries in copy suppression heads indicating semantic senses / features that are ignored by copy suppression. Maybe multiple anti-induction heads compose (within or between layers) so that if one maps a feature to the null space, another doesn't (or some linear combination) or via a more complicated function of sets of features being used to inform suppression. 
- Similarly, show that the OV circuit is suppressing the same features/features you think are being used to determine semantic similarity. If there's some asymmetry here, that could be interesting as it would correspond to "I calculate A and B as similar by their similarity in the *california axis* but I suppress predictions of any token that has the feature for anywhere on the West Coast*).

I'm particularly excited about this because it might represent a really good way to show how knowing features informs the quality of mechanistic explanations. 

Cool work! I'd be excited to see whether latents found via this method are higher quality linear classifiers when they appear to track concepts (eg: first letters) and also if they enable us to train better classifiers over model internals than other SAE architectures or linear probes (https://transformer-circuits.pub/2024/features-as-classifiers/index.html).

Cool work!

Have you tried to generate autointerp of the SAE features? I'd be quite excited about a loop that does the following:

  • take an SAE feature, get the max activating examples.
  • Use a multi-modal model, maybe Claude, to do autointerp via images of each of the chess positions (might be hard but with the right prompt seems doable).
  • Based on a codebase that implements chess logic which can be abstracted away (eg: has functions that take a board state and return whether or not statements are true like "is the king in check?"), get a model to implement a function that matches it's interpretation of the feature.
  • Use this to generate a labelled dataset on which you then train a linear probe.
  • Compare the probe activations to the feature activations. In particular, see whether you can generate a better automatic interpretation of the feature if you prompt with examples of where it differs from the probe.

I suspect this is nicer than language modelling in that you can programmatically generate your data labels from explanations rather than relying on LMs. Of course you could just a priori decide what probes to train but the loop between autointerp and next probe seems cool to me. I predict that current SAE training methods will result in long description lengths or low recall and the tradeoff will be poor.

Great work! I think this a good outcome for a week at the end of ARENA (Getting some results, publishing them, connecting with existing literature) and would be excited to see more done here. Specifically, even without using an SAE, you could search for max activating examples for each steering vectors you found if you use it as an encoder vector (just take dot product with activations).

In terms of more serious followup, I'd like to much better understand what vectors are being found (eg by comparing to SAEs or searching in the SAE basis with a sparsity penalty), how much we could get out of seriously scaling this up and whether we can find useful applications (eg: is this a faster / cheaper way to elicit model capabilities such as in the context of sandbagging).

I think that's exactly what we did? Though to be fair we de-emphasized this version of the narrative in the paper: We asked whether Gemma-2-2b could spell / do the first letter identification task. We then asked which latents causally mediated spelling performance, comparing SAE latents to probes. We found that we couldn't find a set of 26 SAE latents that causally mediated spelling because the relationship between the latents and the character information, "exogenous factors", if I understand your meaning, wasn't as clear as it should have been. As I emphasized in a different comment, this work is not about mechanistic anomalies or how the model spells, it's about measurement error in the SAE method.

This thread reminds me that comparing feature absorption in SAEs with tied encoder / decoder weights and in end-to-end SAEs seems like valuable follow up. 

Thanks Egg! Really good question. Short answer: Look at MetaSAE's for inspiration. 

Long answer:

There are a few reasons to believe that feature absorption won't just be a thing for graphemic information:

  • People have noticed SAE latent false negatives in general, beyond just spelling features. For example this quote from the Anthropic August update. I think they also make a comment about feature coordination being important in the July update as well. 

If a feature is active for one prompt but not another, the feature should capture something about the difference between those prompts, in an interpretable way.  Empirically, however, we often find this not to be the case – often a feature fires for one prompt but not another, even when our interpretation of the feature would suggest it should apply equally well to both prompts.

  • MetaSAEs are highly suggestive of lots of absorption. Starts with letter features are found by MetaSAEs along with lots of others (my personal favorite is a " Jerry" feature on which a Jewish meta-feature fires. I won't what that's about!?) 🤔
  • Conceptually, being token or character specific doesn't play a big role. As Neel mentioned in his tweet here, once you understand the concept, it's clear that this is a strategy for generating sparsity in general when you have this kind of relationship between concepts. Here's a latent that's a bit less token aligned in the MetaSAE app which can still be decomposed into meta-latents.

In terms of what I really want to see people look at: What wasn't clear from Meta-SAEs (which I think is clearer here) is that absorption is important for interpretable causal mediation. That is, for the spelling task, absorbing features look like a kind of mechanistic anomaly (but is actually an artefact of the method) where the spelling information is absorbed. But if we found absorption in a case where we didn't know the model knew a property of some concept (or we didn't know it was a property), but saw it in the meta-SAE, that would be very cool. Imagine seeing attribution to a latent tracking something about a person, but then the meta-latents tell you that the model was actually leveraging some very specific fact about that person. This might really important for understanding things like sycophancy...
 

Great work! Using spelling is very clear example of how information gets absorbed in the SAE latent, and indeed in Meta-SAEs we found many spelling/sound related meta-latents.

 

Thanks! We were sad not to have time to try out Meta-SAEs but want to in the future.

I have been thinking a bit on how to solve this problem and one experiment that I would like to try is to train an SAE and a meta-SAE concurrently, but in an adversarial manner (kind of like a GAN), such that the SAE is incentivized to learn latent directions that are not easily decomposable by the meta-SAE. 

Potentially, this would remove the "Starts-with-L"-component from the "lion"-token direction and activate the "Starts-with-L" latent instead. Although this would come at the cost of worse sparsity/reconstruction.

I think this is the wrong way to go to be honest. I see it as doubling down on sparsity and a single decomposition, both of which I think may just not reflect the underlying data generating process. Heavily inspired by some of John Wentworth's ideas here

Rather than doubling down on a single single-layered decomposition for all activations, why not go with a multi-layered decomposition (ie: some combination of SAE and metaSAE, preferably as unsupervised as possible).  Or alternatively, maybe the decomposition that is most useful in each case changes and what we really need is lots of different (somewhat) interpretable decompositions and an ability to quickly work out which is useful in context. 

It seems that PIBBSS might be pivoting away from higher variance blue sky research to focus on more mainstream AI interpretability. While this might create more opportunities for funding, I think this would be a mistake. The AI safety ecosystem needs a home for “weird ideas” and PIBBSS seems the most reputable, competent, EA-aligned place for this! I encourage PIBBSS to “embrace the weird,” albeit while maintaining high academic standards for basic research, modelled off the best basic science institutions.

 

I was a recent PIBBSS mentor, and am a mech interp person who is likely to be considered mainstream by many people and for this reason I wanted to push back on this concern.

A few thoughts:

  • I don't want to put words in your mouth but I do want to clarify that we shouldn't conflate having some mainstream mech interp and being only mech interp. Importantly, to my knowledge, there is very little chance of PIBBSS entirely doing mech interp, and so I think the salient question is should they have "a bit" (say 5-10% of scholars) do mech interp (which is likely more than they used to). I would advocate for a steady state proportion of between 10 - 20%, see further points for detail). 
  • In my opinion, the word "mainstream" suggests redundancy and brings to mind the idea that "well this could just be done at MATS". There are two reasons I think this is inaccurate. 
    • First, PIBBSS is likely to accept mentees who may not get into MATS / similar programs. Mentees with diverse background and possibly different skillsets. In my opinion, this kind of diversity can be highly valuable and bring new perspectives to mech interp (which is a pre-paradigmatic field in need of new takes).  I'm moderately confident that to the extent existing programs are highly selective, we should expect diversity to suffer in them (if you take the top 10% by metrics like competence, you're less likely to get the top 10% by diversity of intellectual background). 
    • Secondly, I think there's a statistical term for this but I forget what it is. PIBBSS being a home for weird ideas in mech interp as much as weird ideas in other areas of AI safety seems entirely reasonable to me. 
  • I also think that even some mainstream mech interp (and possible other areas like evals) should be a part of PIBBSS because it enriches the entire program:
    • My experience of the PIBBSS retreat and subsequent interactions suggests that a lot of value is created by having people who do empirical work interact with people who do more theoretical work. Empiricists gain ideas and perspective from theorists and theoretical researchers are exposed to more real world observations second hand. 
    • I weakly suspect that some debates / discussions in AI safety may be lopsided / missing details via the absence of sub-fields. In my opinion it's valuable to sometimes mix up who is in the room but likely worse in expectation to always remove mech interp people (hence my advocacy for 10 - 20% empiricists, with half of them being interp). 

 

Some final notes:

  • I'm happy to share details of the work my scholar and I did which we expect to publish in the next month.
  • I'll be a bit forward and suggest that if you (Ryan) or any other funders find the arguments above convincing then it's possible you might want to further PIBBSS and ask Nora how PIBBSS can source a bit more "weird" mech interp, a bit of mainstream mech interp and some other empirical sub-fields for the program. 

I'll share this in the PIBBSS slack to see if other's want to comment :) 

Load More