MiguelDev

→  help avoid catastrophic AI failures...

 

Ethically aligned prototype: RLLMv3

Unethically aligned prototype: Paperclip-Todd

Sequences

Reinforcement Learning using Layered Morphology (RLLM)

Comments

Yeah, I saw your other replies in another thread and I was able to test it myself later today and yup it's most likely that it's OpenAI's new LLM. I'm just still confused why call such gpt2.

Copy and pasting an entire paper/blog and asking the model to summarize it? - this isn't hard to do, and it's very easy to know if there is enough tokens, just run the text in any BPE tokenizer available online. 

I'm not entirely sure if it's the same gpt2 model I'm experimenting with in the past year. If I get my hands on it, I will surely try to stretch its context window - and see if it exceeds 1024 tokens to test if its really gpt2.

But if your goal is to achieve high counterfactual impact in your own research, then you should probably draw inspiration from the opposite: "singular" discoveries, i.e. discoveries which nobody else was anywhere close to figuring out.


This idea reminds me of the concepts in this post: Focus on the places where you feel shocked everyone's dropping the ball.

I don't think this phenomenon is just related to the training data alone because in RLLMv3, the " Leilan" glitch mode persisted while " petertodd" became entirely unrelated to bitcoin. It's like some glitch tokens can be affected by the amount of re-training and some aren't. I believe that there is something much deeper is happening here, an architectural flaw that might be related to the token selection/construction process.

I think altruism isn't directly evolutionarily connected to power, and it's more like "act morally (according to local culture) while that's helpful for gaining power" which translates to "act altruistically while that's helpful for gaining power" in cultures that emphasize altruism. Does this make more sense?

 

I think that there is a version of an altruistic pursuit where one will, by default, "reduce his power." I think this scenario happens when, in the process of attempting to do good, one exposes himself more to unintended consequences. The person who sacrifices will reduce his ability to exercise power, but he may regain or supersede such loss if the tribe agrees with his rationale for such sacrifice.

On my model, one of the most central technical challenges of alignment—and one that every viable alignment plan will probably need to grapple with—is the issue that capabilities generalize better than alignment.


Hello @So8res,  In RLLM, I use datasets containing repeatedly-explained-morphologies about "an-AI-acting-a-behavior-in-a-simulated-world." Then, I re-trained GPT2XL to  "observe" these repeatedly-explained-morphologies and saw promising results. I think this process of observing repeatedly-explained-morphologies is very similar to how a language model acquiring biases during pre-training and if the language model is capable enough, it will acquire an understanding of the values (including the simulated world). 

Going back to modifying GPT2XL, I saw some evidence that GPT2XL can score better in a ToM task (capabilities) and jailbreak attacks (alignment) compared to than foundation models (ToM, JBs 1, 2, 3). I would like to know or hear your thoughts on this approach - Is this a good attempt in your books to solve the hard bit challenge, that capabilities generalize better than alignment? Thank you for your time reading this.

Load More