Rohin Shah

Research Scientist at DeepMind. Creator of the Alignment Newsletter. http://rohinshah.com/

Sequences

Value Learning
Alignment Newsletter

Wiki Contributions

Comments

Sorted by

Say that at dataset size , the distance between points is . Now consider a new distance  -- what is the corresponding  we need?

Intuitively, for each factor of 2 that  is smaller than  (which we can quantify as ), we need to multiply by another factor of .

So 

That is, the distance scales as .

Rohin ShahΩ8108

Google DeepMind does lots of work on safety practice, mostly by other teams. For example, Gemini Safety (mentioned briefly in the post) does a lot of automated red teaming. The AGI Safety & Alignment team has also contributed to safety practice work. GDM usually doesn't publish about that work, mainly because the work here is primarily about doing all the operational work necessary to translate existing research techniques into practice, which doesn't really lend itself to paper publications.

I disagree that the AGI safety team should have 4 as its "bread and butter". The majority of work needed to do safety in practice has little relevance to the typical problems tackled by AGI safety, especially misalignment. There certainly is some overlap, but in practice I would guess that a focus solely on 4 would cause around an order of magnitude slowdown in research progress. I do think it is worth doing to some extent from an AGI safety perspective, because of (1) the empirical feedback loops it provides, which can identify problems you would not have thought of otherwise, and (2) at some point we will have to put our research into practice, and it's good to get some experience with that. But at least while models are still not that capable, I would not want it to be the main thing we do.

A couple of more minor points:

  • I still basically believe the story from the 6-year-old debate theory, and see our recent work as telling us what we need to do on the journey to making our empirical work better match the theory. So I do disagree fairly strongly with the approach of "just hill climb on what works" -- I think theory gives us strong reasons to continue working on debate.
  • It's not clear to me where empirical work for future problems would fit in your categorization (e.g. the empirical debate work). Is it "safety theory"? Imo this is an important category because it can get you a lot of the benefits of empirical feedback loops, without losing the focus on AGI safety.

It clearly can't be having a large effect, since the accuracies aren't near-100% for any of the methods. I agree leakage would have some effect. The mechanism you suggest is plausible, but it can't be the primary cause of the finding that debate doesn't have an advantage -- since accuracies aren't near-100% we know there are some cases the model hasn't memorized, so the mechanism you suggest doesn't apply to those inputs.

More generally, all sorts of things have systematic undesired effects on our results, aka biases. E.g. I suspect the prompts are a bigger deal. Basically any empirical paper will be subject to the critique that aspects of the setup introduce biases.

I don't know for sure, but I doubt we checked that in any depth. It would be quite hard to do, and doesn't seem that important for our purposes, since we're comparing different post-training algorithms (so pretraining data leakage would affect all of them, hopefully to similar extents).

Oh I see. The main reason we're training weak LLMs as judges right now is because it lets us iterate faster on our research (relative to using human judges). But we're imagining having human judges when aligning a model in practice.

(To be clear, I could imagine that we use LLMs as judges even when aligning a model in practice, but we would want to see significantly more validation of the LLM judges first.)

The goal with debate is to scale to situations where the debaters are much more capable than the judge, see AI safety via debate for discussion of why this seems plausible.

Rohin ShahΩ240

I'm not going to repeat all of the literature on debate here, but as brief pointers:

  • Factored cognition discusses intuitively why we can hope to approximate exponentially-sized trees of arguments (which would be tremendously bigger than arguments between people)
  • AI safety via debate makes the same argument for debate (by showing that a polynomial time judge can supervise PSPACE -- PSPACE-complete problems typically involve exponential-sized trees)
  • Cross-examination is discussed here
  • This paper discusses the experiments you'd do to figure out what the human judge should be doing to make debate more effective
  • The comments on this post discuss several reasons not to anchor to human institutions. There are even more reasons not to anchor to disagreements between people, but I didn't find a place where they've been written up with a short search. Most centrally, disagreements between people tend to focus on getting both people to understand their position, but the theoretical story for debate does not require this.

(Also, the "arbitrary amounts of time and arbitrary amounts of explanation" was pretty central to my claim; human disagreements are way more bounded than that.)

Rohin ShahΩ342

I do, but more importantly, I want to disallow the judge understanding all the concepts here.

I think I don't actually care about being robust to this assumption. Generally I think of arbitrarily-scalable-debate as depending on a universality assumption (which in turn would rule out "the judge can never understand the concepts"). But even if the universality assumption is false, it wouldn't bother me much; I don't expect such a huge gap between debaters and judges that the judge simply can't understand the debaters' concepts, even given arbitrary amounts of time and arbitrary amounts of explanation from the debaters. (Importantly, I would want to bootstrap alignment, to keep the gaps between debaters and the judge relatively small.)

"The honest strategy"? If you have that, you can just ask it and not bother with the debate. If the problem is distinguishing it, and only dishonest actors are changing their answers based on the provided situation, you can just use that info. But why are you assuming you have an "honest strategy" available here?

The general structure of a debate theorem is: if you set up the game in such-and-such way, then a strategy that simply answers honestly will dominate any other strategy.

So in this particular case I am saying: if you penalize debaters that are inconsistent under cross-examination, you are giving an advantage to any debater that implements an honest strategy, and so you should expect training to incentivize honesty.

Rohin ShahΩ34-2

Making that kind of abstract conclusion from a practical number of experiments requires abstractions like potential energy, entropy, Noether's theorem, etc - which in this example, the judge doesn't understand. (Without such abstractions, you'd need to consider every possible type of machine separately, which isn't feasible.)

I agree, but I don't see why that matters. As I mentioned, a main point of debate is to produce good oversight of claims without giving the judge an understanding of those claims. In this example I would imagine that you decompose the argument as:

  1. A fundamental law of physics is conservation of energy: energy can neither be created nor destroyed, only transformed from one form to another.
  2. Electricity is a form of energy.
  3. This box does not have an infinite source of energy.
  4. The above three together imply that the box cannot produce infinite electricity.

The inventor can disagree with one or more of these claims, then we sample one of the disagreements, and continue debating that one alone, ignoring all the others. This doesn't mean the judge understands the other claims, just that the judge isn't addressing them when deciding who wins the overall debate.

If we recurse on #1, which I expect you think is the hardest one, then you could have a decomposition like "the principle has been tested many times", "in the tests, confirming evidence outweighs the disconfirming evidence", "there is an overwhelming scientific consensus behind it", "there is significant a priori theoretical support" (assuming that's true), "given the above the reasonable conclusion is to have very high confidence in conservation of energy". Again, find disagreements, sample one, recurse. It seems quite plausible to me that you get down to something fairly concrete relatively quickly.

If you want to disallow appeals to authority, on the basis that the correct analogy is to superhuman AIs that know tons of stuff that aren't accepted by any authorities the judge trusts, I still think it's probably doable with a larger debate, but it's harder for me to play out what the debate would look like because I don't know in enough concrete detail the specific reasons why we believe conservation of energy to be true. I might also disagree that we should be thinking about such big gaps between AI and the judge, but that's not central.

The debaters are the same AI with different contexts, so the same is true of both debaters. Am I missing something here?

That seems right, but why is it a problem?

The honest strategy is fine under cross-examination, it will give consistent answers across contexts. Only the dishonest strategy will change its answers (sometimes saying the perpetual energy machines are impossible sometimes saying that they are possible).

Rohin ShahΩ240

There are several different outs to this example:

  • You should at least be able to argue that the evidence does not support the conclusion, and that the boss should have substantial probability on "the box can make some electricity but not infinitely much".
  • You can recursively decompose the claim "perpetual motion machines are known to be impossible" until you get down to a claim like "such and such experiment should have such and such outcome", which the boss can then perform to determine a winner.
    • This does not mean that the boss then understands why perpetual motion machines are impossible -- an important aspect of debate that it aims to produce good oversight of claims without giving the judge an understanding of those claims.
    • This particular approach will likely run into the problem of obfuscated arguments though.
  • The debaters are meant to be copies of the same AI, and to receive exactly the same information, with the hope that each knows what the other knows. In the example, this hopefully means that you understand how the inventor is tricking your boss, and you can simply point it out and explain it.
    • If the inventor legitimately believes the box produces infinite electricity, this won't work, but also I consider that out of scope for what debate needs to do. We're in the business of getting the best answer given the AI's knowledge, not the true answer.
    • If both you and the inventor know that the claim is impossible from theory, but don't know the local error that the inventor made, this won't work.
  • You can cross-examine the inventor and show that in other contexts they would agree that perpetual energy machines are impossible. (Roughly speaking, cross-examination = wiping memory and asking a new question.)

The process proposed in the paper

Which paper are you referring to? If you mean doubly efficient debate, then I believe the way doubly efficient debate would be applied here is to argue about what the boss would conclude if he thought about it for a long time.

Load More