Leon Lang

I'm a PhD student at the University of Amsterdam. I have research experience in multivariate information theory and equivariant deep learning and recently got very interested into AI alignment. https://langleon.github.io/

Wiki Contributions

Comments

Sorted by

Thanks for the post, I agree with the main points.

There is another claim on causality one could make, which would be: LLMs cannot reliably act in the world as robust agents since by acting in the world, you change the world, leading to a distributional shift from the correlational data the LLM encountered during training.

I think that argument is correct, but misses an obvious solution: once you let your LLM act in the world, simply let it predict and learn from the tokens that it receives in response. Then suddenly, the LLM does not model correlational, but actual causal relationships.

Agreed.

I think the most interesting part was that she made a comment that one way to predict a mind is to be a mind, and that that mind will not necessarily have the best of all of humanity as its goal. So she seems to take inner misalignment seriously. 

40 min podcast with Anca Dragan who leads safety and alignment at google deepmind: https://youtu.be/ZXA2dmFxXmg?si=Tk0Hgh2RCCC0-C7q

To clarify: are you saying that since you perceive Chris Olah as mostly intrinsically caring about understanding neural networks (instead of mostly caring about alignment), you conclude that his work is irrelevant to alignment?

I can see that research into proof assistants might lead to better techniques for combining foundation models with RL. Is there anything more specific that you imagine? Outside of math there are very different problems because there is no easy to way to synthetically generate a lot of labeled data (as opposed to formally verifiable proofs).

Not much more specific! I guess from a certain level of capabilities onward, one could create labels with foundation models that evaluate reasoning steps. This is much more fuzzy than math, but I still guess a person who created a groundbreaking proof assistant would be extremely valuable for any effort that tries to make foundation models reason reliably. And if they’d work at a company like google, then I think their ideas would likely diffuse even if they didn’t want to work on foundation models.

Thanks for your details on how someone could act responsibly in this space! That makes sense. I think one caveat is that proof assistant research might need enormous amounts of compute, and so it’s unclear how to work on it productively outside of a company where the ideas would likely diffuse.

Leon LangΩ91815

I think the main way that proof assistant research feeds into capabilies research is not through the assistants themselves, but by the transfer of the proof assistant research to creating foundation models with better reasoning capabilities. I think researching better proof assistants can shorten timelines.

  • See also Demis' Hassabis recent tweet. Admittedly, it's unclear whether he refers to AlphaProof itself being accessible from Gemini, or the research into AlphaProof feeding into improvements of Gemini.
  • See also an important paragraph in the blogpost for AlphaProof: "As part of our IMO work, we also experimented with a natural language reasoning system, built upon Gemini and our latest research to enable advanced problem-solving skills. This system doesn’t require the problems to be translated into a formal language and could be combined with other AI systems. We also tested this approach on this year’s IMO problems and the results showed great promise."
Leon Lang158

https://www.washingtonpost.com/opinions/2024/07/25/sam-altman-ai-democracy-authoritarianism-future/

Not sure if this was discussed at LW before. This is an opinion piece by Sam Altman, which sounds like a toned down version of "situational awareness" to me. 

The news is not very old yet. Lots of potential for people to start freaking out.

One question: Do you think Chinchilla scaling laws are still correct today, or are they not? I would assume these scaling laws depend on the data set used in training, so that if OpenAI found/created a better data set, this might change scaling laws.

Do you agree with this, or do you think it's false?

Leon Lang140

https://x.com/sama/status/1813984927622549881

According to Sam Altman, GPT-4o mini is much better than text-davinci-003 was in 2022, but 100 times cheaper. In general, we see increasing competition to produce smaller-sized models with great performance (e.g., Claude Haiku and Sonnet, Gemini 1.5 Flash and Pro, maybe even the full-sized GPT-4o itself). I think this trend is worth discussing. Some comments (mostly just quick takes) and questions I'd like to have answers to:

  • Should we expect this trend to continue? How much efficiency gains are still possible? Can we expect another 100x efficiency gain in the coming years? Andrej Karpathy expects that we might see a GPT-2 sized "smart" model.
  • What's the technical driver behind these advancements? Andrej Karpathy thinks it is based on synthetic data: Larger models curate new, better training data for the next generation of small models. Might there also be architectural changes? Inference tricks? Which of these advancements can continue?
  • Why are companies pushing into small models? I think in hindsight, this seems easy to answer, but I'm curious what others think: If you have a GPT-4 level model that is much, much cheaper, then you can sell the service to many more people and deeply integrate your model into lots of software on phones, computers, etc. I think this has many desirable effects for AI developers:
    • Increase revenue, motivating investments into the next generation of LLMs
    • Increase market-share. Some integrations are probably "sticky" such that if you're first, you secure revenue for a long time. 
    • Make many people "aware" of potential usecases of even smarter AI so that they're motivated to sign up for the next generation of more expensive AI.
    • The company's inference compute is probably limited (especially for OpenAI, as the market leader) and not many people are convinced to pay a large amount for very intelligent models, meaning that all these reasons beat reasons to publish larger models instead or even additionally. 
  • What does all this mean for the next generation of large models? 
    • Should we expect that efficiency gains in small models translate into efficiency gains in large models, such that a future model with the cost of text-davinci-003 is massively more capable than today's SOTA? If Andrej Karpathy is right that the small model's capabilities come from synthetic data generated by larger, smart models, then it's unclear to me whether one can train SOTA models with these techniques, as this might require an even larger model to already exist. 
    • At what point does it become worthwhile for e.g. OpenAI to publish a next-gen model? Presumably, I'd guess you can still do a lot of "penetration of small model usecases" in the next 1-2 years, leading to massive revenue increases without necessarily releasing a next-gen model. 
    • Do the strategies differ for different companies? OpenAI is the clear market leader, so possibly they can penetrate the market further without first making a "bigger name for themselves". In contrast, I could imagine that for a company like Anthropic, it's much more important to get out a clear SOTA model that impresses people and makes them aware of Claude. I thus currently (weakly) expect Anthropic to more strongly push in the direction of SOTA than OpenAI.
Load More