I'm a PhD student at the University of Amsterdam. I have research experience in multivariate information theory and equivariant deep learning and recently got very interested into AI alignment. https://langleon.github.io/
Agreed.
I think the most interesting part was that she made a comment that one way to predict a mind is to be a mind, and that that mind will not necessarily have the best of all of humanity as its goal. So she seems to take inner misalignment seriously.
40 min podcast with Anca Dragan who leads safety and alignment at google deepmind: https://youtu.be/ZXA2dmFxXmg?si=Tk0Hgh2RCCC0-C7q
To clarify: are you saying that since you perceive Chris Olah as mostly intrinsically caring about understanding neural networks (instead of mostly caring about alignment), you conclude that his work is irrelevant to alignment?
I can see that research into proof assistants might lead to better techniques for combining foundation models with RL. Is there anything more specific that you imagine? Outside of math there are very different problems because there is no easy to way to synthetically generate a lot of labeled data (as opposed to formally verifiable proofs).
Not much more specific! I guess from a certain level of capabilities onward, one could create labels with foundation models that evaluate reasoning steps. This is much more fuzzy than math, but I still guess a person who created a groundbreaking proof assistant would be extremely valuable for any effort that tries to make foundation models reason reliably. And if they’d work at a company like google, then I think their ideas would likely diffuse even if they didn’t want to work on foundation models.
Thanks for your details on how someone could act responsibly in this space! That makes sense. I think one caveat is that proof assistant research might need enormous amounts of compute, and so it’s unclear how to work on it productively outside of a company where the ideas would likely diffuse.
I think the main way that proof assistant research feeds into capabilies research is not through the assistants themselves, but by the transfer of the proof assistant research to creating foundation models with better reasoning capabilities. I think researching better proof assistants can shorten timelines.
https://www.washingtonpost.com/opinions/2024/07/25/sam-altman-ai-democracy-authoritarianism-future/
Not sure if this was discussed at LW before. This is an opinion piece by Sam Altman, which sounds like a toned down version of "situational awareness" to me.
The news is not very old yet. Lots of potential for people to start freaking out.
One question: Do you think Chinchilla scaling laws are still correct today, or are they not? I would assume these scaling laws depend on the data set used in training, so that if OpenAI found/created a better data set, this might change scaling laws.
Do you agree with this, or do you think it's false?
https://x.com/sama/status/1813984927622549881
According to Sam Altman, GPT-4o mini is much better than text-davinci-003 was in 2022, but 100 times cheaper. In general, we see increasing competition to produce smaller-sized models with great performance (e.g., Claude Haiku and Sonnet, Gemini 1.5 Flash and Pro, maybe even the full-sized GPT-4o itself). I think this trend is worth discussing. Some comments (mostly just quick takes) and questions I'd like to have answers to:
Thanks for the post, I agree with the main points.
There is another claim on causality one could make, which would be: LLMs cannot reliably act in the world as robust agents since by acting in the world, you change the world, leading to a distributional shift from the correlational data the LLM encountered during training.
I think that argument is correct, but misses an obvious solution: once you let your LLM act in the world, simply let it predict and learn from the tokens that it receives in response. Then suddenly, the LLM does not model correlational, but actual causal relationships.