New Answer

Ask Related Question

New Comment

1 Answers sorted by

A finite factored set is "just" a set with a specific choice of decomposition as a product of sets . I'm not sure what definition of phase space you're using, but for a sufficiently general definition of dynamical system (e.g. https://en.wikipedia.org/wiki/Dynamical_system#Formal_definition) I don't think that the phase space necessarily has coordinates in this way. The position / momentum phase space example is a special case, where your phase space happens to look like a product of copies of the real numbers, which is then getting back to the "factored" part of a finite factored set. I'm not convinced that there's a deep connection here, though am not very familiar with either concept so could easily be missing something here!

Moderation Log

Garrabrant's finite factored sets feel to me like the same thing as a phase space of a dynamical system. The differences I can see are that phase spaces are not always finite, and that finite factored sets don't have the context of a dynamical rule defined on them. They seem to share the property that every element in the set has exactly one coordinate in each dimension/is an element of exactly one partition of each factor.