Intuitively,A 'corrigible' agent is one that doesn't interfere with what we would intuitively see as attempts to 'correct' the agent, or 'correct' our mistakes in building it; and permits these 'corrections' despite the apparent instrumentally convergent reasoning saying otherwise.
More abstractly:
A corrigible agent preserves its corrigibility, even as it creates new sub-systemsstronger form of corrigibility would require the AI to positively cooperate or sub-agents, evenassist, such that the AI would rebuild the shutdown button if it undergoes significantwere destroyed, or experience a positive preference not to self-modification.modify if self-modification could lead to incorrigibility. But this is not part of the primary specification since it's possible that we would not want the AI trying to actively be helpful in assisting our attempts to shut it down, and would in fact prefer the AI to be passive about this.
Formalizing these requirements (into a full specificationGood proposals for achieving corrigibility in specific regards are open problems in AI alignment. Some areas of an agent which, if implemented, would exhibit corrigible behavior)active current research are Utility indifference and Interruptibility.
Achieving total corrigibility everywhere via some single,...
A 'corrigible' agent is one that doesn't interfere with what we would intuitively see as attempts to 'correct' the agent, or 'correct' our mistakes in building it; and permits these 'corrections' despite the apparent instrumentally convergent reasoning saying otherwise.
More generally, as noted by instrumentally convergent strategies, most utility functions give an agent strong incentives to retain its current utility function: imagine an agent constructed so that it acts according to the utility function U, and imagine further that its operators think they built the agent to act according to a different utility function U'. If the agent learns this fact, then it has incentives to either deceive its programmers (prevent them from noticing that the agent is acting according to U instead of U') or manipulate its programmers (into believing that they actually prefer U to U', or by coercing them into leaving its utility function in tact)intact).
A first attempt at describing a corrigible agent might involve specifying a utility maximizing agent that is uncertain about its utility function. However, while this could allow the agent to make some changes to its preferences as a result of observations, the agent would still be incorrigible when it came time for the programmers attemptedto attempt to correct what they see as mistakes in their attempts to formulate how the "correct" utility function should be determined from interaction with the environment.
This seems like something that could be investigateinvestigated in practice on e.g. a chess program.
A 'corrigible' agent is one that doesn't interfere with what we would intuitively see as attempts to 'correct' the agent, or 'correct' our mistakes in building it; and permits these 'corrections' despite the apparent instrumentally convergent reasoning saying otherwise.
To build e.g. a Butlerianmindblind genie, we need to have the AI e.g. not experience an instrumental incentive to get better at modeling minds, or refer mind-modeling problems to subagents, etcetera. The general subproblem might be 'averting the instrumental pressure to become good at modeling a particular aspect of reality'. A toy problem might be an AI that in general wants to get the gold in a Wumpus problem, but doesn't experience an instrumental pressure to know the state of the upper-right-hand-corner cell in particular.
To build e.g. a mindblindbehaviorist genie, we need to have the AI e.g. not experience an instrumental incentive to get better at modeling minds, or refer mind-modeling problems to subagents, etcetera. The general subproblem might be 'averting the instrumental pressure to become good at modeling a particular aspect of reality'. A toy problem might be an AI that in general wants to get the gold in a Wumpus problem, but doesn't experience an instrumental pressure to know the state of the upper-right-hand-corner cell in particular.
To build e.g. a Butlerian genie, we need to have the AI e.g. not experience an instrumental incentive to get better at modeling minds, or refer mind-modeling problems to subagents, etcetera. The general subproblem might be 'averting the instrumental pressure to become good at modeling a particular aspect of reality'. A toy problem might be an AI that in general wants to get the gold in a Wumpus problem, but doesn't experience an instrumental pressure to know the state of the upper-right-hand-corner cell in particular.