I'm so glad you are making a plan and sharing it publicly!
Fun, possibly impactful idea: Have a livestreamed chat with Jan Leike (or some other representative from OpenAI's alignment team) where you discuss and critique each other's plans & discuss how you can support each other by sharing research etc.
Just added some more detail on this to the slides. The idea is that we have various advantages over the model during the training process: we can restart the search, examine and change beliefs and goals using interpretability techniques, choose exactly what data the model sees, etc.
I think that skews it somewhat but not very much. We only have to "win" once in the sense that we only need to build an aligned Sovereign that ends the acute risk period once, similarly to how we only have to "lose" once in the sense that we only need to build a misaligned superintelligence that kills everyone once.
(I like the discussion on similar points in the strategy-stealing assumption.)
Is building an aligned sovereign to end the acute risk period different to a pivotal act in your view?
Depends what the aligned sovereign does! Also depends what you mean by a pivotal act!
In practice, during the period of time where biological humans are still doing a meaningful part of alignment work, I don't expect us to build an aligned sovereign, nor do I expect to build a single misaligned AI that takes over: I instead expect there to be a large number of AI systems, that could together obtain a decisive strategic advantage, but could not do so individually.
So, if I'm understanding you correctly:
and you think the second scenario is more likely than the first.
This does feel pretty vague in parts (e.g. "mitigating goal misgeneralization" feels more like a problem statement than a component of research), but I personally think this is a pretty good plan, and at the least, I'm very appreciative of you posting your plan publicly!
Now, we just need public alignment plans from Anthropic, Google Brain, Meta, Adept, ...
But what stops a blue-cloud model from transitioning into a red-cloud model if the blue-cloud model is an AGI like the one hinted at on your slides (self-aware, goal-directed, highly competent)?
We expect that an aligned (blue-cloud) model would have an incentive to preserve its goals, though it would need some help from us to generalize them correctly to avoid becoming a misaligned (red-cloud) model. We talk about this in more detail in Refining the Sharp Left Turn (part 2).
The LessWrong Review runs every year to select the posts that have most stood the test of time. This post is not yet eligible for review, but will be at the end of 2024. The top fifty or so posts are featured prominently on the site throughout the year.
Hopefully, the review is better than karma at judging enduring value. If we have accurate prediction markets on the review results, maybe we can have better incentives on LessWrong today. Will this post make the top fifty?
Update: The original title "DeepMind alignment team's strategy" was poorly chosen. Some readers seem to have interpreted the previous title as meaning that this was everything that we had thought about or wanted to say about an "alignment plan", which is an unfortunate misunderstanding. We simply meant to share slides that gave a high-level outline of how we were thinking about our alignment plan, in the interest of partial communication rather than no communication.
I recently gave a talk about the DeepMind alignment team's strategy at the SERI MATS seminar, sharing the slides here for anyone interested. This is an overview of our threat models, our high-level current plan, and how current projects fit into this plan.
Disclaimer: This talk represents the views of the alignment team and is not officially endorsed by DeepMind. This is a work in progress and is not intended to be a detailed or complete plan.
Let's start with our threat model for alignment -- how we expect AGI development to go and the main sources of risk.
Development model. We expect that AGI will likely arise in the form of scaled up foundation models fine tuned with RLHF, and that there are not many more fundamental innovations needed for AGI (though probably still a few). We also expect that the AGI systems we build will plausibly exhibit the following properties:
Risk model. Here is an overall picture from our recent post on Clarifying AI X-risk:
We consider possible technical causes of the risk, which are either specification gaming (SG) or goal misgeneralization (GMG), and the path that leads to existential risk, either through the interaction of multiple systems or through a misaligned power-seeking system.
Various threat models in alignment focus on different parts of this picture. Our particular threat model is focused on how the combination of SG and GMG can lead to misaligned power-seeking, so it is in the highlighted cluster above.
Conditional on AI existential risk happening, here is our most likely scenario for how it would occur (though we are uncertain about how likely this scenario is in absolute terms):
We can connect this threat model to our views on MIRI's arguments for AGI ruin.
Note that this is a bit different from the summary of team opinions in our AGI ruin survey. The above summary is from the perspective of our alignment plan, rather than the average person on the team who filled out the survey.
Our approach. Our high level approach to alignment is to try to direct the training process towards aligned AI and away from misaligned AI. To illustrate this, imagine we have a space of possible models, where the red areas consist of misaligned models that are highly competent and cause catastrophic harm, and the blue areas consist of aligned models that are highly competent and don't cause catastrophic harm. The training process moves through this space and by default ends up in a red area consisting of misaligned models. We aim to identify some key point on this path, for example a point where deception was rewarded, and apply some alignment technique that directs the training process to a blue area of aligned models instead.
We can break down our high-level approach into work on alignment components, which focuses on building different elements of an aligned system, and alignment enablers, which make it easier to get the alignment components right.
Components: build aligned models
Enablers: detect models with dangerous properties
Teams and projects. Now we'll briefly review what we are working on now and how that fits into the plan. The most relevant teams are Scalable Alignment, Alignment, and Strategy & Governance. I would say that Scalable Alignment is mostly working on components and the other two teams are mostly working on enablers. Note that this doesn't include everyone doing relevant work at DeepMind.
Scalable alignment (led by Geoffrey Irving):
Alignment (led by Rohin Shah):
Strategy & Governance (led by Allan Dafoe):
Relative to OpenAI's plan. Our plan is similar to OpenAI's approach in terms of components -- we are also doing scalable oversight based on RLHF. We are less confident in components working by default, and are relying more on enablers such as mechanistic interpretability and capability evaluations.
A major part of OpenAI's plan is to use large language models and other AI tools for alignment research. This a less prominent part of our plan, and we mostly count on those tools being produced outside of our alignment teams (either by capabilities teams or external alignment researchers).
General hopes. Our plan is based on some general hopes:
Overall, while alignment is a difficult problem, we think there are some reasons for optimism.
Takeaways. Our main threat model is basically a combination of SG and GMG leading to misaligned power-seeking. Our high-level approach is trying to direct the training process towards aligned AI and away from misaligned AI. There is a lot of alignment work going on at DeepMind, with particularly big bets on scalable oversight, mechanistic interpretability and capability evaluations.