Leon Lang

I'm a PhD student at the University of Amsterdam. I have research experience in multivariate information theory and equivariant deep learning and recently got very interested into AI alignment. https://langleon.github.io/

Wiki Contributions

Comments

Sorted by
Leon Lang120

I just donated $200. Thanks for everything you're doing!

Yeah I think that's a valid viewpoint. 

Another viewpoint that points in a different direction: A few years ago, LLMs could only do tasks that require humans ~minutes. Now they're at the ~hours point. So if this metric continues, eventually they'll do tasks requiring humans days, weeks, months, ...

I don't have good intuitions that would help me to decide which of those viewpoints is better for predicting the future. 

Leon Lang2617

Somewhat pedantic correction: they don’t say “one should update”. They say they update (plus some caveats).

After the US election, the twitter competitor bluesky suddenly gets a surge of new users:

https://x.com/robertwiblin/status/1858991765942137227

Leon Lang123

How likely are such recommendations usually to be implemented? Are there already manifold markets on questions related to the recommendation?

Leon Lang294

In the reuters article they highlight Jacob Helberg: https://www.reuters.com/technology/artificial-intelligence/us-government-commission-pushes-manhattan-project-style-ai-initiative-2024-11-19/

He seems quite influential in this initiative and recently also wrote this post:

https://republic-journal.com/journal/11-elements-of-american-ai-supremacy/

Wikipedia has the following paragraph on Helberg:

“ He grew up in a Jewish family in Europe.[9] Helberg is openly gay.[10] He married American investor Keith Rabois in a 2018 ceremony officiated by Sam Altman.”

Might this be an angle to understand the influence that Sam Altman has on recent developments in the US government?

Leon Lang170

Why I think scaling laws will continue to drive progress

Epistemic status: This is a thought I had since a while. I never discussed it with anyone in detail; a brief conversation could convince me otherwise. 

According to recent reports there seem to be some barriers to continued scaling. We don't know what exactly is going on, but it seems like scaling up base models doesn't bring as much new capability as people hope.

However, I think probably they're still in some way scaling the wrong thing: The model learns to predict a static dataset on the internet; however, what it needs to do later is to interact with users and the world. For performing well in such a task, the model needs to understand the consequences of its actions, which means modeling interventional distributions P(X | do(A)) instead of static data P(X | Y). This is related to causal confusion as an argument against the scaling hypothesis

This viewpoint suggests that if big labs figure out how to predict observations in an online-way by ongoing interactions of the models with users / the world, then this should drive further progress. It's possible that labs are already doing this, but I'm not aware of it, and so I guess they haven't yet fully figured out how to do that. 

What triggered me writing this is that there is a new paper on scaling law for world modeling that's about exactly what I'm talking about here. 

Leon Lang100

Do we know anything about why they were concerned about an AGI dictatorship created by Demis?

What’s your opinion on the possible progress of systems like AlphaProof, o1, or Claude with computer use?

Leon Lang8340

"Scaling breaks down", they say. By which they mean one of the following wildly different claims with wildly different implications:

  • When you train on a normal dataset, with more compute/data/parameters, subtract the irreducible entropy from the loss, and then plot in a log-log plot: you don't see a straight line anymore.
  • Same setting as before, but you see a straight line; it's just that downstream performance doesn't improve .
  • Same setting as before, and downstream performance improves, but: it improves so slowly that the economics is not in favor of further scaling this type of setup instead of doing something else.
  • A combination of one of the last three items and "btw., we used synthetic data and/or other more high-quality data, still didn't help".
  • Nothing in the realm of "pretrained models" and "reasoning models like o1" and "agentic models like Claude with computer use" profits from a scale-up in a reasonable sense.
  • Nothing which can be scaled up in the next 2-3 years, when training clusters are mostly locked in, will demonstrate a big enough success to motivate the next scale of clusters costing around $100 billion.

Be precise. See also.

Load More