What is the probability that my apartment will be struck by a meteorite tomorrow? Based on the information I have, I might say something like 10^{-18}. Now suppose I wanted to approximate that probability with a different number. Which is a better approximation: 0 or 1/2?

The answer depends on what we mean by "better," and this is a situation where epistemic (truthseeking) and instrumental (useful) rationality will disagree.

As an epistemic rationalist, I would say that 1/2 is a better approximation than 0, because the Kullback-Leibler Divergence is (about) 1 bit for the former, and infinity for the latter. This means that my expected Bayes Score drops by one bit if I use 1/2 instead of 10^{-18}, but it drops to minus infinity if I use 0, and any probability conditional on a meteorite striking my apartment would be undefined; if a meteorite did indeed strike, I would instantly fall to the lowest layer of Bayesian hell. This is too horrible a fate to imagine, so I would have to go with a probability of 1/2.

As an instrumental rationalist, I would say that 0 is a better approximation than 1/2. Even if a meteorite does strike my apartment, I will suffer only a finite amount of harm. If I'm still alive, I won't lose all of my powers as a predictor, even if I assigned a probability of 0; I will simply rationalize some other explanation for the destruction of my apartment. Assigning a probability of 1/2 would force me to actually plan for the meteorite strike, perhaps by moving all of my stuff out of the apartment. This is a totally unreasonable price to pay, so I would have to go with a probability of 0.

I hope this can be a simple and uncontroversial example of the difference between epistemic and instrumental rationality. While the normative theory of probabilities is the same for any rationalist, the sorts of approximations a bounded rationalist would prefer can differ very much.