Crisper can snip genomes in particular spots, we probably have the genome of corona virus. Viruses probably don't work if their genome is chopped up. What would happen if you loaded random chunks of the coronavirus genome into crispr, and injected it into someone with coronavirus? I don't know much biology, this may be completely stupid, but if there is someone out their with enough biology knowledge and biohacking skills...
EDIT:
Virus DNA is wrapped in protien shells in the intercellular fluid. You need some way to get your CAS9 into cells, like wrapping it in a virus protien shell, to hijack the viral delivery mechanism. We can use coronavirus itself. Get cas9 targeted to the coronavirus genome, put it within a coronavirus protien shell, and inhale the spray. (You don't need the defences in all your cells, just in your lungs.) The virus injects cas9 in to your cells, if you don't get coronavirus, the cas9 does nothing. If you get it in a cell, the cas9 chops it up. The virus protien shells help train your immune system.
EDIT2
Mutation rate, most of the time, one snip will kill it, sometimes it could mutate. Don't set the crispr to a part you don't want to mutate. Set it somewhere where mutations are harmful in the coronavirus genome, do these viruses have a part that looks the same?
I downvoted this comment (as well as your comment below) for strongly pushing misinformation. As others have noted, the CRISPR/Cas9 system has evolved in bacteria precisely to target viral genomes — "CRISPR is not able to target viruses at all" is simply false. "...and also does not destroy the things it targets" is also false, in a sense; a well-targeted Cas9-induced double-stranded break in the DNA/RNA of a viral genome can certainly disable a crucial viral gene and reduce viral replication, even if you don't consider this "destruction" of the genome.
That's not to say that the CRISPR/Cas9 system is quite ready for antiviral therapy in vivo. One problem is that you could rapidly generate viral escape mutants. Not only do you create selection pressure for the virus to mutate such that your bespoke CRISPR/Cas9 system can't target it anymore, the Cas9 cutting itself guides this process along more rapidly, since double-stranded breaks are often accompanied by random insertions and deletions at the cut site (incorporated during attempted cellular repair of the break). This could potentially be addressed by targeting important, conserv... (read more)