(Added: To see the best advice in this thread, read this summary.)

This is a thread for practical advice for preparing for the coronavirus in places where it might substantially grow.

We'd like this thread to be a source of advice that attempts to explain itself. This is not a thread to drop links to recommendations that don’t explain why the advice is accurate or useful. That’s not to say that explanation-less advice isn’t useful, but this isn't the place for it.

Please include in your answers some advice and an explanation of the advice, an explicit model under which it makes sense. We will move answers to the comments if they don't explain their recommendations clearly. (Added: We have moved at least 4 comments so far.)

The more concrete the explanation the better. Speculation is fine, uncertain models are fine; sources, explicit models and numbers for variables that other people can play with based on their own beliefs are excellent. 

Here are some examples of things that we'd like to see:

  1. It is safe to mostly but not entirely rely on food that requires heating or other prep, because a pandemic is unlikely to take out utilities, although if if they are taken out for other reasons they will be slower to come back on
  2. CDC estimates of prevalence are likely to be significant underestimates due to their narrow testing criteria.
  3. A guesstimate model of the risks of accepting packages and delivery food

One piece of information that has been lacking in most advice we’ve seen is when to take a particular action. Sure, I can stock up on food ahead of time, but not going to work may be costly– what’s your model for the costs of going so I can decide when the costs outweigh the benefits for me? This is especially true for advice that has inherent trade-offs– total quarantine means eating your food stockpiles that you hopefully have, which means not having them later.


New Answer
Ask Related Question
New Comment

48 Answers sorted by

Since COVID usually kills via pneumonia, and insufficient vitamin D appears to be a surprisingly large risk factor in respiratory infection, it’s probably pretty important to keep vitamin D levels sufficient (which in most people means supplementing it specifically, esp if there’s any quarantine that affects food).

Amazon link


  • Study says 4x rate of respiratory infection in the very deficient, but doesn’t see an obvious effect in the partially deficient, so slightly weird statistics.
  • Study says very large effects in children
  • WHO says linked
  • Study says no effect from supplementing after already sick, so get on this before infection

Note: In the summary post, this comment thread suggests getting only normal amounts of vitamin D.

From Lifestyle interventions to increase longevity:

There’s also the bad news that multivitamins mostly don’t do anything. There has not been found an alternative to eating a variety of nutrient-dense whole foods. Though vitamin D supplementation appears to be quite beneficial.

(FWIW, I just purchased from the Amazon link!)

It seems to me like this study wasn't very good and I've been more convinced by the rebuttals, such as this one: https://www.youtube.com/watch?v=o0u8UdZeOhc [https://www.youtube.com/watch?v=o0u8UdZeOhc]

Incentive sperometers are often used for the prevention of pneumonia. Maybe this suggests using those as well?

Good call, these are indeed useful, though I'm not sure if worth it. Guessing 20 mins total for vitamin D for a 3x decrease in 10% of the population is roughly a 7% risk reduction, while maybe 10 hours on the spirometer for a ~~3% effect? (Eyeballing this study [https://www.sciencedirect.com/science/article/abs/pii/S1072751510000128] in pneumonia sequelae looks like an 80% effect from this over 2 years, plus other interventions.) If this thing on average knocks 2 months off my life, a 3% effect is still 2 days, plus you get other health benefits, BUT if I'm planning on quarantining hard enough to not get it, the benefits do go down.

Scott Alexander says Vitamin D is (TL;DR) just good for bone health, even though studies exist saying otherwise.



I'm leaning on the expected value rather than robust evidence. Definitely seems plausible to me that it's not useful for immune function outside bone health. But priors (it's the one vitamin not in diet, so everyone is deficient) and the small amount of evidence are enough to make me think it's net-positive, and even 20% likely to help by a small amount is a relatively large benefit (~ a day of life). It seems hard enough to find small effect sizes of things via study that I'm not at all surprised meta-analyses showed no evidence for it—and when I don't really expect to see evidence, defaulting to "do what seems like it would be healthy in the ancestral environment" says sunlight is probably a better bet than supplements, but being non-deficient in vitamin D is probably a better bet than being deficient. (And again, this doesn't apply to other vitamins because they're in the diet. It does apply to e.g. sleep and exercise though.)

What would be the appropriate dose of Vitamin D?

The large effects on children is an odd example (poor example?) to point at since children have been reported to have the least harm from COVID-19.

1000-2000IU on average per day for an adult, depending on your size. You add this up and take it instead every 2-3 days likely without any issues (e.g. I take 3000-4000IU every 2-3days) If you have lighter toned skin and get regular sun exposure you may not need any supplementation

You can get vitamin D from sunlight exposure. For white people, this doesn't take long, probably minutes (around noon) of direct exposure on your face and arms. If your skin is darker, it takes longer. You have to expose more skin for longer periods. Black people maybe can't get enough at high latitude and will have to take the pills. If you're supplementing this way, you do have to actually step outside for a bit. Exposure through windows that block UV is not going to work. Obviously, sunscreen will prevent some exposure.

If you get a sunburn, you waited t

... (read more)

Is there any reason to worry copper tape might be less effective than the copper used in experiments? (I haven't read methods to see if they describe the source of the copper) For example, a lot of copper is designed to be resistant to oxidation - does that matter?

Advice: Use gloves or wash your hands after handling delivery packages, and be careful not to touch your face while handling them.


  • Packages have been handled by many people, who have economic incentives to come to work even when sick
  • Coronavirus has a long asymptomatic but infectious period
  • -> Once coronavirus is at all prevalent, your packages will be exposed
  • Coronavirus can live on surfaces for many days (my research)
  • Cardboard is hard to sterilize (I'm still investigating this one)
  • -> You're likely to pick up virus particles on your hand from handling packages
  • Washing is effective at clearing virus particles off of your hands
  • Unless you've already transferred them to mucous members by touching your face.

In photos of Amazon fulfillment centers, the workers appear to mostly be wearing fabric work gloves, not disposable gloves. Workers touch both the outer cardboard box and the item; but if the item has its own packaging, anything inside of that will probably have been untouched since manufacture, which is probably long enough.

I wrote a post with a comprehensive disinfection protocol here, although some criticized it for being excessively paranoid.

I also spray all deliveries with disinfectant and put them for a waiting room for days. Also disinfect floor where they were and the bottoms of my shoes.

I haven't been able to find anything on the effectiveness of disinfectant on cardboard. Do you have any pointers?
What I know from clean rooms in the biopharmaceutical production is that you avoid there cardboard at all because there is no straightforward way for disinfection (besides the particulate contamination that comes with them). Therefore, one approach is to remove the cardboard as soon as possible and put it away (and wash your hands afterwards). Edit - Additional comment to make the statement more precise: There is no straightforward way for disinfection of cardboard without destroying it, i.e., the cardboard soaks in the cleaning agent and will disintegrate.

Do you mind elaborating on how you reconcile your model with the 1st CDC link you list in your research? "In general, because of poor survivability of these coronaviruses on surfaces, there is likely very low risk of spread from products or packaging that are shipped over a period of days or weeks at ambient temperatures" And my interpretation of the 2nd JHI link is that since cardboard is perhaps closest to wood/paper, then the persistence is about 1-4 days, which seems to indicate a relatively low risk (at least compared to other surfaces). I think taking your advice is reasonable because it only increases safety; I just wanted to better understand what we think the risk level is.

1. I don't particularly trust the CDC on this 2. The CDC is talking specifically about infection from China (I assume this was written when CoV was more contained), and I agree that typical transit time from China is long enough to let the virus die. I'm specifically concerned about the delivery person and the dude at the Amazon warehouse who packed the box.

How about using UV lamps and ozone in bathroom to sanitize the deliveries? This might be particularly useful for groceries.

Please don't use ozone - https://www.lesswrong.com/posts/LwcKYR8bykM6vDHyo/coronavirus-justified-practical-advice-thread?commentId=qRnqPAThJEJp9ySkE [https://www.lesswrong.com/posts/LwcKYR8bykM6vDHyo/coronavirus-justified-practical-advice-thread?commentId=qRnqPAThJEJp9ySkE]

Unexpected difficulty: if I open packages with scissors wearing gloves, I tend to cut my gloves. Maybe this would work better now that I have a box cutter?

Use hand sanitizer or wash hands with soapy water frequently- after touching any doorknob exposed to an epidemic, at a minimum. (This includes doorknobs that only you touch, if there's a chance that you're in an infections asymptomatic state). Other triggers include the normal cases of before cooking and before eating.

What does frequently mean? Whatever your answer, why that, instead of 10% more or 10% less? Discussion from another post about the payoff of handwashing in general and how to determine the right frequency: https://www.lesswrong.com/posts/ztDYsD4v7AaAbWEDM/some-quick-notes-on-hand-hygiene#9jW5reovD4cMeXcZh [https://www.lesswrong.com/posts/ztDYsD4v7AaAbWEDM/some-quick-notes-on-hand-hygiene#9jW5reovD4cMeXcZh]

Tl;dr Putting copper tape on commonly-touched surfaces is a high-value thing to do in the case you’re actively trying to avoid infection, since copper kills viruses and ~~50% of viral disease is from hand-to-surface-to-face contact (h/t Adam Scholl for hypothesis) [ETA: coronavirus seems to have mostly (?) respiratory droplet transmission, so this prior is less relevant but still worth intervening upon]

Amazon link (sadly, probably one Amazon item that won’t go out of stock)

Metals killing bacteria is well-documented, like all the very consistent results in this paper comparing 9 metals (lead kills slightly better than copper but that unfortunately extends to the humans; zinc and some other metals also kill pretty well, only two did not). Within an hour, copper dropped CFU from 10^6->10^1 (the measurement threshold). Zinc took 2 hours, nickel 4.

Unfortunately, this isn’t in widespread use in hospitals yet. But when it does, copper on the most-touched surfaces of an ICU appears to reduce infections by about half (bed handles, chair armrests, nurse call buttons, and a few others). But these are in very high-germ-load environments. What happens in a normal home?

First, how much of disease spread is from hand-to-surface vs airborne or hand-to-hand? I lost the citation and it wasn't well backed, but apparently you don't catch colds through suspended particles very often (someone has to sneeze within 6 feet or exhale in your face lots). And hand-to-hand contact spreads it more efficiently but (one paper said) less frequently than hand-to-surface-to-hand, especially in environments without lots of high-fiving and hand-shakes. Plus, the study saying 50% infection reduction from copperizing main surfaces would fit well with a base rate of ~70% hand-to-surface infections and, of these, ~70% of touches in the ICU got sanitized by the dangerous surface metal coverings. But 70% sounds like a lot so I’m going to be a little conservative and just say 50%.

Now, it’s hard to figure out how many things you’d need to cover with copper to reduce most of this. But some typical commonly-touched shared items are:

  • doorknobs (brass is probably ok, steel is not) [ETA: comment below points out brass not ok]
  • light switches
  • faucets
  • toilet handles
  • refrigerator
  • drawer handles
  • writing implements
  • backs of chairs

Depending on how many people you are sharing touch-space and not air-space with, I expect covering these in copper could reduce infection by anything from 1 to 50%, though I expect in a typical house of four people who sometimes venture outside and don’t know about never touching your face, you’d get an effect roughly between 15 and 40%.

[UPDATED, thanks to various people who caught errors in V1 and pointed out V2] New NIH study of COVID half-life in aerosol or on surfaces V1 with errors: https://medrxiv.org/content/10.1101/2020.03.09.20033217v1 , V2 hopefully error free: https://www.medrxiv.org/content/10.1101/2020.03.09.20033217v2.full.pdf (H/T @AndyBioTech)

2.4-5.11 hours on copper, in contrast to 10.5-16.1 on steel or 13-19.2 on plastic

This study describes "detecting viable virus" as having a threshold of 10^0.5 TCID50/mL, and they assume exponential decay of viable virus particles. 

I'm really confused by their numbers, tho; it looks like cardboard has a hundred-fold reduction in 23 hours, from 10^2.5 to their detection threshold of 10^0.5, which I can't square with the 8.5 hour half-life. [Edit: it looks like I'm potentially confused about what TCID50/mL means?]

I also don't know how to compare their detection threshold with the point at which I should be willing to handle a cardboard box (with varying levels of cleaning and PPE). Is their test basically as sensitive as my immune system (in that I shouldn't handle something where they could see a viable virus, and can handle something where they can't)? Or should I be letting boxes sit for 3 days?

I had the same confusion over the half life ratings. TCID50/mL [https://en.wikipedia.org/wiki/Virus_quantification#Endpoint_dilution_assay] is how much you can dilute a sample and still have it kill half of the cells in a sample. This suggests that the natural reading of those graphs is correct. I estimated some numbers off the graph and it looks like what they are calling half-life is actually 1/5th life, so either we're both missing something important or there is an error somewhere.
I've emailed the author; we'll see if she has time to respond (or if the code goes up on Github; I can't find it yet).
Looks like v2 [https://www.medrxiv.org/content/10.1101/2020.03.09.20033217v2.full.pdf] of the paper has corrected the error.
See here: https://www.lesswrong.com/posts/B9qzPZDcPwnX6uEpe/coronavirus-justified-practical-advice-summary?commentId=LuJRfhrNhu4aBanQn [https://www.lesswrong.com/posts/B9qzPZDcPwnX6uEpe/coronavirus-justified-practical-advice-summary?commentId=LuJRfhrNhu4aBanQn]

Worth noting that a lot of metal handles will be coated with a finish that prevents you from actually touching the metal. This is because these metals (especially copper) can leave a strong metallic smell on your hands which people typically dislike, and also because it prevents the metals from tarnishing. These handles will not help reduce infection and will need copper tape on them.

Killing bacteria isn't the same as killing viruses. Do we have reason to expect the same efficiency?

Sorry, forgot to modify this for a virus-specific claim, but yes.

On solid copper, H1N1 decreased by 4 logs in 6 hours in this review; vaccinia and monkeypox viruses were reduced by 6 logs in 3 minutes in this study; murine norovirus was destroyed in 30 minutes in this study, though it doesn't work very well at 4C; and another review says that copper oxide filters neutralize all of "bacteriophages [58-62], Infectious Bronchitis Virus [63], Poliovirus [61,64], Junin Virus [59], Herpes Simplex Virus [58,59], Human Immunodeficiency Virus Type 1 (HIV-1) [11,65-67], West Nile Virus [11], Coxsackie Virus Types B2 & B4, Echovirus 4 and Simian Rotavirus SA11 [68]. More recently, the inactivation of Influenza A [55,65], Rhinovirus 2, Yellow Fever, Measles, Respiratory Syncytial Virus, Parainfluenza 3, Punta Toro, Pichinde, Adenovirus Type 1, Cytomegalovirus, and Vaccinia [65]".

In this context, is a log a factor of 2, or of 10 (or of e)?
Medical doctors, so 10
Wikipedia suggests [https://en.wikipedia.org/wiki/Antimicrobial_properties_of_copper#Antimicrobial_efficacy_of_copper_alloy_touch_surfaces] copper can kill at least influenza A virus and adenovirus. It seems likely that it would be effective against other viruses too, though not clear (to me) if it would work against every virus.

This ERI review concludes that there was really only one RCT (the one you linked), and they found that the study didn't actually reach significance

Our calculation found that the difference in the HAI rate (regardless of MRSA/VRE colonization status) between the study groups was not significant (copper-equipped ICUs: 17/294 [5.8%] versu snon-copper-equipped ICUs: 29/320 [9.1%]; p=0.123). The median length of stay for both groups was four days (p=0.74). The reported mortality rate was 42/294 patients (14.29%) in copper-equipped ICUs versus 50/320 (15.63%) in non-copper-equipped ICUs(p=0.64).

What's going on here is that Salgado splits outcomes into 4 groups, nothing, infection, colonization, and both, and finds a difference between the 4 groups. The review says "I only care about infection" and compares infection vs non-infection, and finds no significance. Each version of their math checks out, but I'm inclined to trust the review here.

This quasiexperimental study found similar decreases in infection rates however.

I'm not sure how to evaluate this evidence, but I'd be cautious about taking the Salgado results on its face.

If it's a cheap countermeasure that aims, in the better estimate, for a 50% reduction of a small risk I think you'd be better off asking yourself if you'd buy it at double price rather than deciding which of the equally persuasive, conflicting experimental evidences about its efficacy you should trust. Also if you're worried about non monetary costs like hand skin damage, I guess you'd better decide if you'd put up with the same cost for a 25% risk reduction.

Earlier I heard something like "wrinkles in the copper can reduce the effect, something something the fluids get caught in little pockets and leave spots that don't touch the copper."

Have you heard anything about that and have any thoughts on that? A lot of the images I see of people coppering their doorknobs are particularly wrinkly, and I'm wondering how much effort to put into getting everything smooth.

Not that it's necessary to make this comment complete, but I'd love to hear more about that 50% estimate. I've had a very hard time getting data on that.

5Ben Pace3y

Do you expect this to work for copper that has oxidized? Our bathroom copper is turning green and not sure if it's still doing anything.

Oxidized copper has actually shown*increased* anti microbial activity in some studies IIRC. Also this https://www.sciencedirect.com/science/article/pii/S0010938X17313963 [https://www.sciencedirect.com/science/article/pii/S0010938X17313963]

The document referring to copper that I found via SSC was https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067274/ .

The time of contact killing listed among the different microbes ranges from 1 minute to over a week. I don't know which example of a microbe would be closest to copper.

One big problem that may exist with using copper that I came across is that copper may reduce in efficacy if it is frequently cleaned, whereas stainless steel is fine to repeatedly clean. Source

The cleaner suggested to be used on copper surfaces without reducing its effic... (read more)

Is there a reason we're not spamming reddit/discords etc. with this advice?

I don't have enough karma on reddit to do things, but r/china_flu, r/lifeprotips, r/todayilearned all seem like good places to post this information.

Additionally, it might be worth it to spam amazon listings of copper tape with reviews saying it has antiviral properties. Possibly contacting the sellers of the tape as well.

Because 'spamming' is a rude way to force people to pay attention to you, and should be discouraged. But posting the information in ways that follow community norms seems good, although I'd want to think a bit about prioritising messages to spread - quite plausible to me that advertising the need for expanded capability to supply oxygen to people is more important.
Note that sellers probably can't make claims about this without running into legal tape.

That seems useful. You forgot one of the most commonly touched items - phones and computers. I am gonna put tape on the back of my phone case and my laptop.

This is a good point, but for what it's worth I don't fully endorse coppering your phone (mine isn't coppered). Several people have anecdotally reported it being uncomfortable or irritating on their hands, or receiving tiny cuts from the copper, etc.

Absorption through skin is incredibly low, but I do take the risk of open (if tiny) hand wounds seriously, and also generally try to reduce my total copper contact in case anything weird does happen, since this is not tested by time.

Some discussion of whether wearing copper jewelry causes unsafe exposure to toxic copper compounds: https://orchid.ganoksin.com/t/verdigris-poisonous-copper-compounds/42591 [https://orchid.ganoksin.com/t/verdigris-poisonous-copper-compounds/42591] Seems like the case for copper on door handles is stronger than the case for copper on your phone, laptop palm rests, etc.
You touch these often, yes, but how often do you share them with other people? If all the germs on there are yours, maybe disinfecting it is not really helping.

But if you are constantly handling your phone it will reduce the value of frequent washing/sanitizing of hands, since anything you do get on your hands will transfer to your phone.

Although, I don't know what the numbers look like for transferring virus when a touch occurs -- e.g. if we look at a path like "handshake -> touch phone -> [wash hands] -> touch phone -> touch face", how much of the virus is left after four sequential touch events like that? Perhaps this kind of secondary contamination is not actually a huge deal? I have no idea.

I guesstimate the deal is not negligible. Input to my intuition: (source http://theconversation.com/atms-dispense-more-than-money-the-dirt-and-dope-thats-on-your-cash-79624 [http://theconversation.com/atms-dispense-more-than-money-the-dirt-and-dope-thats-on-your-cash-79624] ) A powder called Glo Germ, meant to visualize germ spread, was still visible to the naked eye after 8 handshakes (but not 9) in an informal experiment by YouTuber Mark Rober. ( https://youtu.be/I5-dI74zxPg?t=346 [https://youtu.be/I5-dI74zxPg?t=346] )
This is my usual attitude, but given the evidence that coronavirus is very long lived on surfaces and reinfection is possible, it seems worth it to me in this specific case.

Living in a group house? Consider copper tape on:

Front door handle

Bathroom door handle and sink handle

Refrigerator Door handle

Kitchen trash lid handle if not touchless

Microwave handle + small square of cutout copper tape on '+1 minute' microwave button

[This comment is no longer endorsed by its author]Reply

Edit: Sounds like this isn't very useful because you'll be able tell if you're having trouble breathing? See comment below.

Advice: Get a pulse oximeter to be able to triage at home.

Reasoning: If you're mildly sick, you probably don't want to go to a medical office (both because you'll be clogging up an overcrowded system, and because you'll be around people who are even sicker). But you need to know when you're sick enough to need medical care.

One way medical professionals triage is by vital signs. Most of them are obvious either to you or to other people (shortness of breath, paleness, dizziness, turning blue) but oxygen saturation (how well-oxygenated your blood is) is not. If you think you might have pneumonia (one of the common effects of coronavirus), low oxygen saturation is one of the things that would indicate that, and lower numbers should move you toward getting medical care. 95% and above is normal (at sea level) and lower numbers mean it's likely your lungs aren't working properly (with outcomes being worse the lower the number is).

The device is cheap and easy to use.

Note that you might still be very sick and need medical care even if your oxygen level is fine, so this is a way to rule in being sick enough to need medical care but doesn't rule it out.

Guide to using and what levels are normal

More detailed instructions for troubleshooting

Article on lower oxygen saturation meaning worse outcomes for pneumonia

(I'm not a medical professional and would appreciate it if someone who is would double-check the logic here, or some risk I'm not thinking of in terms of people reading it wrong and coming to wrong conclusions)

TL;DR. If you have (slightly) low PaO2, but no trouble breathing, you probably don't need to go to the hospital. And if you have trouble breathing, you should probably go to the hospital whether or not you have low PaO2. So testing for oxygen saturation doesn't add much.

I had an online conversation with an intensive care physician. I sent him a translated version of juliawise's text and he said he didn't think buying the pulse oximeter would help and then sent me a 5 minute audio explaining why. The following text is his audio translated from Portuguese to English, I hope there are no wrong translations and I changed my mind after listening to him. Please also share what you think about his response:

"All pneumonia will desaturate the patient. O2 saturation is related to perfusion (gas exchange). Patient with acute respiratory syndrome (inflammation of the lungs by viral or bacterial infection) may course with poor tissue perfusion, that is, inadequate tissue oxygenation. One way to evaluate this is pulse oximetry, PaO2.

Patients with respiratory discomfort due to lung inflammation may or may not present desaturation. PaO2 < 90 indicates oxygen therapy. ... (read more)

This comment could maybe use a tl;dr saying:

If you have (slightly) low SpO2, but no trouble breathing, you probably don't need to go to the hospital. And if you have trouble breathing, you should probably go to the hospital whether or not you have low SpO2. So testing for oxygen saturation doesn't add much.

Is there any info the comment was meant to convey that that leaves out?

5Filipe Marchesini3y
Thanks for the suggestion, ESRogs. I'm adding the shortened version now.
According to this NYT article [https://www.nytimes.com/2020/04/20/opinion/coronavirus-testing-pneumonia.html], Covid pneumonia often (in most cases?) initially causes low blood oxygen without obvious respiratory discomfort or shortness of breath ("silent hypoxia"), and early detection of this can be critical. If true, it is a very strong argument in favor of pulse oximeter.

It seems to me that the usefulness of a pulse oximeter depends on the progression of the disease. If "low osat" comes before "fever etc", then a pulse oximeter would help you move from "low osat → fever etc. → see a doctor" to "low osat → see a doctor → fever etc.". But if "fever etc." comes first, I would think you would be at "fever etc. → see a doctor → get osat measured" regardless of whether you have a pulse oximeter, and so I don't see how the p... (read more)

This is useful in case you have facing a choice of riding it out at home and going to a hospital with high probability of getting infected if you're not already. E.g. if you have fever chances are still high you're just experiencing regular flu, and should not go to the hospital, but if your oxigen starts dropping into the danger zone you need to go.

There seems to be a general variance in what pulse oximeters display when measuring healthy individuals with readings from 94% - 100%. I also seem to remember reading that they are sensitive to altitude, whether hands are cold etc (n.b typing on phone, can't verify at the mo)

Talking to a doctor friend -- in clinical settings if an oximeter shows a reading < 90%, it's considered serious, but different people respond differently, but closely enough for the purposes of this discussion to fall into two groups. Either you develop a shortness of bre... (read more)

This site provides link for medical kit. You can copy and paste the supply list rather than purchase, or follow link to each item.

The logic is to "save you a trip to the doctor, or to support remote care via phone/video chat. " Recommended diagnostic tools are digital thermometer, finger oximeter, blood pressure cuff, and stethoscope for lung sounds.

In order to avoid cross infection, it is a good idea to use telemedicine rather than emergency room or doctors' offices.

Suggestion: research options for video chat, text messaging, or emailing d... (read more)

Where would you buy one and what brand?

1Chris Hibbert3y
I saw an earlier recommendation and went to Amazon. They have pages of them, differentiated by color and style, which made me realize they are a commodity, in common use among a particular large population of at risk people. They're not covered by health insurance, so there's actual competition. Look at the ratings and use your usual yardsticks to pick ones that people who have bought before find to be reliable and useable.

You should have some kind of electrolyte powder or electrolyte drinks on hand. When sick with any disease that can cause a fever (Fever is one of the symptoms of COVID-19 that pretty much everyone gets), staying hydrated is possibly the most important thing for you to be doing. You may be losing fluids from sweating and you may not be paying much attention to how much you are drinking. You will do a better job staying hydrated if everything you need to be hydrated can be right next to your bed. Once you have a fever it will really suck to go acquire stuff and you should be staying at home anyway.

Don't bother with the drinks. Recommended home-made rehydration drinks usually are sugar + salt for electrolytes. You want ~12x as much sugar as salt, and if you want to prep early, you can store the sugar-salt mixture and add it to water - you want about a half tablespoon of the mixture pur cup of water.


Unless this is the only thing you have to eat/drink for more than a couple days, this is fine - no need for anything complicated or expensive. And if you're too sick to eat solids or other foods, I'd suspect you don't have COVID-19, you have something else.

Can you respond directly to the claims that potassium and magnesium are also useful? It seems like your implicit model is that people will definitely be able to eat and therefore those will not be a concern.

I'm not sure I understand the question, exactly. Yes, lots of things are useful, like vitamin D, Zinc, and Potassium - but they aren't important for preventing dehydration, and the WHO recommends using the above sugar + salt formula for home preparation, which is why I pointed out that it's recommended. If you want to buy Soylent, or Gatorade, or anything else, go ahead, but if you're trying to prevent dehydration, there's no need to buy any specialized drinks.
Re. potassium, I buy a low-sodium salt because it's usually high in potassium.
(Also, instant soup mix + hot water is a perfectly good replacement when you have a fever, as long as you're not actually getting severely dehydrated, say, due to diarrhea.)
Where does the 12x come from? The link mentions 1/2 a tablespoon of salt versus 2 tablespoons of sugar, which is a factor 4 in volume. A quick google says the densities only differ by 25% (and in the direction that makes the ratio closer, not further apart), so this is not mass percentage either. EDIT: Never mind, they mention 1/2 a teaspoon of salt. My mistake.

What's the advantage of electrolytes over just table salt?

Magnesium and Potassium, mostly.
This changed my mind, thank you.
I'm not sure if electrolyte powder is more hydrating than salt. . . But I think there's a lot to be said for making water taste good enough to you that you want to keep drinking it. Often things taste worse than usual when sick and having something you can mix with water that tastes good will make you more likely to keep drinking it. For the same reason I try to have a variety of hydrating things I'm willing to drink around so when one gets old I can switch to a different one.
It includes potassium in right proportion.
I am wondering this too. I think they contain more of the essential compounds we need need for our water/"salt" balance. Like, not just sodium and chloride as in table salt, but also maybe potassium and calcium? Store bought "potassium salt" provides you everything but the calcium, unsure about the proportions though. Also, it looks like not all "electrolytes" contain calcium anyway. Eg this one just contains potassium, sodium and chloride and zinc: https://www.target.com/p/pedialyte-advancedcare-electrolyte-solution-tropical-fruit-33-8-fl-oz/-/A-21538752 [https://www.target.com/p/pedialyte-advancedcare-electrolyte-solution-tropical-fruit-33-8-fl-oz/-/A-21538752]

What happens when your electrolytes get low? I just have a vague sense that it's bad.

Main electrolytes : Sodium, chloride, potassium, calcium, phosphate, and magnesium. Low electrolyte conditions if you want to check specifics: hyponatremia (sodium), hypochloremia (choloride), hypokalemia (potassium), hypocalcemia (calcium), hypophosphatamia (phosphate), hypomagnesemia (magnesium). Electrolyte imbalances are more of a concern with severe vomiting/diarrhoea conditions rather than with running a fever. (unless severe and prolonged sweating or underlying conditions). Fever = increased sweating. Sweat = water and mainly sodium and chloride. * An easy check is to taste your sweat. If it's salty, you're OK. * Monitor the colour of your urine - pale yellow (straw coloured) suggests adequate hydration. Hydration is important to maintain. Plain water is usually sufficient. Little and often. (Too much water can also be dangerous i.e. don't be drinking a litre at a time). 0.9% NaCl solution is isotonic ("normal saline " I.V fluids) Standard practice for homemade "electrolyte solution" is a pinch of table salt and a level teaspoon of sugar in a pint of water.

Probably stupid question, but why electrolyte drinks rather than just water?

6Thomas Kwa3y
Your blood normally contains around 140 mmol/L of sodium, and smaller amounts of calcium, magnesium, and potassium. Sodium is the most important of these and has the narrowest normal range (135-145 mmol/L). Except for calcium (which can be taken from your bones) there is little storage. In normal circumstances you don't lose much water and can get sufficient electrolytes from food, but during fever your fluid loss rate can easily be increased by multiple liters per day, and you may be eating much less as well.

Hospitalization and oxygen therapy thresholds

Tl;dr: Not knowing much about this and not a doctor, my current policy is to go to a hospital if SpO2 drops below ~92% and my hospital isn’t completely overrun, unless my SpO2 is naturally low or some other extenuating circumstance. If I was forced to use an oxygen concentrator outside of a hospital, I would target a ~~94-96% SpO2 range, trying very hard to make sure I didn’t hit 99%

If you do have COVID and shortness of breath, when do you go to a hospital?

Hopefully you already have a pulse oximeter as Julia Wise recommends. But sources say anywhere between 90 and 95% SpO2 is the threshold for hospitalization (WHO says <= 93% is classified as severe, ctrl+f “O2”), while other sources say you should threshold on trouble breathing and shortness of breath, not the actual SpO2 number.

It seems to me that using “trouble breathing” as the indicator would track the lung blockages and thus immune response relatively well, while O2 as an indicator would track the danger metric directly (if in fact the primary source of death is insufficient oxygen; if anyone knows this, would be useful).

The benefit of looking at trouble breathing is that it’s an advance indicator. Usually people progress from oxygen therapy to ventilators relatively quickly. If you have naturally low SpO2, your O2 might drop under threshold (say, 93%) in the early stages with mild trouble breathing, but you wouldn’t have much of a dangerous immune response until later. In this case, you’d have wanted to use difficulty breathing as your indicator instead of SpO2.

That being said, having low oxygen seems pretty bad for you, both by common sense and science. For example, 92% or lower is associated with increased morbidity in pneumonia patients; <90% is increased with 36% increased morbidity. Since it’s hard to measure even moderate effects due to the treatment-correlated-with-severity issue, my guess is that there’s some general bodily harm from reduced oxygen even at levels like 95%, though I don’t know how much. So at some SpO2 threshold, I think you want to be supplementing oxygen even if your breathing doesn’t feel that difficult.

Unfortunately, it seems like you can’t supplement oxygen at 95%, because over-oxygenating causes neuronal damage. Standard targets appear to be 94-98% or 92-96%. This study says it seems bad to set your target range during oxygen therapy to greater than 92-96%, because one inevitably exceeds the upper target occasionally. This review/musing muses that it’s a difficult problem, evidence for hyperoxaemia being pretty bad is “comparatively strong”, but not strong enough to warrant especially conservative oxygen titration. Because of these numbers, I think 92-93% is a reasonable threshold to self-hospitalize, since anything above this means they probably shouldn’t be oxygenating you anyways.

If hospitals are overloaded and you have to do oxygen therapy yourself (really try not to do this), I think the targets above are still reasonable, subject to your ability to titrate well with the machine. If you have lots of trouble, of course be conservative. However, you may be able to do better than hospitals: the first study above says that “even in a research setting in the intensive care unit, in which patients receiving mechanical ventilation are closely monitored, most patients who were randomized to an SpO2 target of 90–92% and were receiving supplementary oxygen did not have their inspired oxygen reduced if the SpO2 was 99% or 100%.” So—seems like you could easily do better monitoring than this if you were oxygenating at home. This is why I would probably shoot for 94-96% myself.

Hand sanitizer is becoming hard to find. Here are some WHO guidelines on making your own :


Formula 1:

• Ethanol 96%: 8333 ml • Hydrogen peroxide 3%: 417 ml • Glycerol 98%: 145 ml

Formula 2:

• Isopropyl alcohol 99.8%: 7515 ml • Hydrogen peroxide 3%: 417 ml • Glycerol 98%: 145 ml

Edit: Top off with distilled water until you get 10L of product.

My justification is argument from authority. I have no explicit model. Although both formulas use high concentrations of alcohol which are known to be effective disinfectants.

(FactorialCode has fixed it.)

The formulas above are incomplete. You have to fill them up to ten litres with water. Thus it is written in the PDF.

(As far as I know, too high an alcohol concentration makes the sanitizer less effective.)

Good catch.

If 99%+ isopropyl alcohol becomes unavailable, it looks like the other common concentrations are 70% and 91%. Using 70% isopropyl alcohol and not diluting gives you 65% alcohol, which is below the 75% in the recipe-- anyone know if 65% is likely to be effective?

In that case you can use the straight 70 % isopropyl alcohol as a sanitizer and be fine. According to the WHO guidelines, only the isopropyl alcohol is the effective substance in the recipe. The hydrogen peroxide is ‘used to inactivate bacterial spores in the solution’. If you buy medical-grade 70 % isopropyl alcohol, there shouldn't be any bacterial spores in it. The glycerol serves as a humectant. If you don't add it, you might have to use more sanitizer in order to keep your skin wet for the whole thirty seconds. And you'll have to keep your skin happy in some way separate from the sanitizing.

Normally something with AfA as justification would be moved to comments, but it's useful and extremely specific in ways that can still be the foundations for a good argument, so we're leaving it in answers.

I feel like citing WHO is just about as valid as it gets in this context. WHO is just as much "from authority" as citing a few scientific papers.

Hand sanitizer is a poor substitute for actually washing your hands with soap and water.

Coronaviruses are "enveloped" viruses, which means they have a fat-based shell that protects the genetic material and (presumably) aids it in infecting a cell.

Destroying this shell "kills" the virus.

While an alcohol sanitizer can of course dissolve the fats in the shell, it is difficult to get enough alcohol all over the skin to do this.

Soap is more effective because it actively attacks fats, and of course washing your hands provides far more volume and time in which to destroy the virus shells.

7Lukas Trötzmüller3y
What is your source for this? The CDC recommends hand sanitizer in cases where washing is not easily possible. https://www.cdc.gov/coronavirus/2019-ncov/about/prevention-treatment.html [https://www.cdc.gov/coronavirus/2019-ncov/about/prevention-treatment.html] Studies confirm the efficacy of hand sanitizer against enveloped viruses [1][2]. Although there is some evidence that handwashing is preferable against viruses [3]. [1] https://academic.oup.com/jid/article/215/6/902/2965582 [https://academic.oup.com/jid/article/215/6/902/2965582] [2] [https://academic.oup.com/jid/article/215/6/902/2965582] https://apps.who.int/iris/bitstream/handle/10665/44102/9789241597906_eng.pdf;jsessionid=D50A762FABCFB1569406859669F8FAD4?sequence=1 [https://apps.who.int/iris/bitstream/handle/10665/44102/9789241597906_eng.pdf;jsessionid=D50A762FABCFB1569406859669F8FAD4?sequence=1] [3] https://msphere.asm.org/content/4/5/e00474-19 [https://msphere.asm.org/content/4/5/e00474-19]

The aim of your quarantine procedure and other actions should be to delay your exposure to coronavirus until after the peak has passed. It is unlikely to be possible to delay it indefinitely, especially if we are going to have a return to normalcy.

With every epidemic there is likely to be a peak - a period of exponential growth, climaxing in a peak and then a slowdown. Your goal should be to get exposed after the peak period. During the peak, medical supplies will be stretched very thin and hospitals may be overflowing. After the peak, medical professionals have a lot of experience dealing with the disease and we will know the landscape of outcomes and treatments. As long as the medical systems are not destroyed by the virus, that may be the best time to get it.

I modeled a logistic growth equations for a population of 7 million (bay area) and different estimates of the doubling rate I found in the literature - for a doubling rate of every 3 days, the peak seems to come after about 2 months from initial exposure. For a doubling rate of every 7 days, the peak comes about 4 months after initial exposure. Since the virus has likely been circulating for several weeks already, we can predict the peak in the bay area is 1-3 months out. How it actually plays out will vary a lot based on containment measures, public events, lifestyle of the populace, etc.

This is all extremely speculative but gives me a goal to shoot for - before I was trying to figure out what is the goal of quarantine for myself, if I was ever going to rejoin society. Now I have a model for why I should avoid getting it.

Instead of a single peak moment, we want to think about "the time period during which medical supplies and services are overwhelmed with demand". And that starts, in my rough estimation, the moment all the hospital beds are full.

In the US, we have 3 hospital beds for every 1000 people, and 2 of them are occupied on average. So we're going to start having problems once 1 in 1000 people want to go to the hospital for coronavirus, which corresponds to an infection rate around 1%.

So that pushes the moment of great worry forward by quite a bit!

On the other side, it's hard to predict when supply will again overtake demand. Maybe governmental intervention comes through on a massive scale, maybe mass quarantine works, maybe the weather warms up and transmission declines. But I'm worried it will take months for any of those to happen after the crisis times begin.

I would modify your advice to "2 weeks before all the hospital beds are full (in your local region)", because 2 weeks is roughly the lag time between exposure and needing hospitalization (I think?). With exponential growth @ 5day doubling time, you really want to not catch it when 0.01%ish of the local population is hospitalized [assuming per-capita hospital beds in your region is typical of the USA]. My region has ~7M people, so I would be thinking about upping my social-isolation game when 700 people in my region are in the hospital, or something vaguely like that. Probably adjust that down quite a bit for uncertainty in the input parameters, and for not all cases being diagnosed (even in the hospital). Adjust down even more if lots of hospital staff are likely to get sick or quarantined because they're not taking appropriate precautions, which seems probable at the moment.

6Ben Pace3y
Why do you believe that about the number of hospital beds? This seems like an important number to have, I wasn't sure of it myself.
Hospital beds per 1000 people [https://data.worldbank.org/indicator/SH.MED.BEDS.ZS] - some world data
As leggi said, the USA has about 3 hospital beds per 1000 people [https://en.wikipedia.org/wiki/List_of_OECD_countries_by_hospital_beds], and utilization is about 67% [https://www.statista.com/statistics/185904/hospital-occupancy-rate-in-the-us-since-2001/]. As for why it's a good proxy... I couldn't think of a better one that's simple and objective. Can you?

[EDIT: enough has been learned since I made this model that it is now deprecated. I am now working from home, indeed 2 weeks after the answer was first composed]

A guesstimate model I made to determine whether I should stay home from work. Most of the innovation is in collecting guesses/gut feelings and then doing the calculations. Based on my guesses, I shouldn't bother working from home for a few months. [EDIT: for complicated reasons it's probably more like one month] [EDIT: after further adjustments, partly to parameters and partly to the structure, it's now like 2 weeks] https://www.getguesstimate.com/models/15212

Meta note: the costs of being isolated are roughly linear in how long you're isolated, but the costs of being in public are exponential in the regime where your chance of getting infected is small and proportional to the number of people who are infected. As a result, you'd rather self-isolate one week early than one week late. Given the model uncertainty in any modelling attempt like this, this means you probably want to be a bit more paranoid than the model suggests.

Model update: previously, the model wasn't including the possibility of a chain of length more than 1 of people infecting each other at work, ending with you. This increases the disease burden of attending work by a factor of 2.

Model update: There's been another confirmed case of community transmission in the Bay Area, so I've updated the number of infections I expect there to be.

Guesstimate model update: Number of days you want to wait until working from home is (unsurprisingly) very dependent on epidemic doubling time estimates. Fiddling with the distribution to basically update on reports of 1- or 2-day doubling times in some contexts, the model now says that I want to wait a month before working from home.

It looks like you're just assuming how many people will be infected, rather than basing that off current infection levels? Is that correct?

Well, I tried to calculate that off of current infection levels, but indeed that isn't built into the model. I agree that's a big place to change the model.

Note of course that this could be missing obvious factors, if so please let me know.

A non-obvious flaw in the model: the "number of days until you should work from home" distribution is using in its calculation samples from the "current dollar value per day of disease burden of attending work", rather than the mean as it should. There's no easy way to fix this, but this pushes that number lower. Note that this error doesn't affect the calculation of whether I should stay home right now. [EDIT: but it does turn "wait a few months" into "wait a bit over a month"]

A 2 weeks supply of food sounds like far too short a supply. The first case of 'atypical pneumonia' was noticed in Wuhan in late Dec. It is now late Feb. They have by now organized themselves in Wuhan to the point where all of the ill people are getting sent to 'local' (temporary) 'hospitals' and the 'local hospitals' are triaging and sending seriously ill people onto actual hospitals with the capacity to care for people who are seriously ill (like requiring oxygen). But this level of organization is a fairly recent situation. Even 2 weeks ago, sick people were literally walking to hospitals, because ambulances were swamped; they were being turned away from hospitals for lack of beds and supplies, and medical personnel to look after them; they were sitting in hospital waiting rooms for hours being cross exposed to other sick people, etc. So, even with massive efforts on the part of the government, it took about 2 months for them to get their act together in a real hot spot of infection. If you are unfortunate enough to end up in a similar type 'hot spot' to Wuhan, (but still live in a first world country) it probably won't take longer than 2 months for the government to get its act together, but I wouldn't assume they will do much better than that... so, if you are planning on buying a little insurance, I'd suggest that a 2 month supply of food, etc, is about minimum of what you would need to get through a (1st world) worst case scenario, rather than 2 weeks.

And a 3 months supply would probably be a better choice than a 2 month supply. It's not like Wuhan is virus free or anything close to it, today, 2 months in...

A 3 month's supply of food sounds crazy, and, true, you probably won't need it. But, it's almost cost free to supply yourself with it. No one at all is suggesting power outages. So, you can probably just stock up on food and supplies you normally use anyway, at least for frozen, canned, and non-perishable type things. That obviously won't do for stuff like milk and fresh fruits and salad stuff, so you'll have to make some substitutions there, but for most other stuff you should be OK if you just buy extras of things you normally buy anyway. The only cost is the inconvenience of buying it all at once, and finding a convenient place to stack it down until you need it.

I have read many reports from people in Wuhan and there is food in the grocery stores. Actually it seems like no currently effected area has a permanent food shortage - there is a run on the stores and then they are full after a restock. However, shopping requires you to leave your house so you will want to minimize it. I think people are over-focusing on food shopping because it feels actionable. You are right that there is almost no downside

If one becomes ill, he needs foods which he could eat without cooking and which are very nutritious. For around one month. One can't eat raw rice, but dry bananas are great.

Cabin fever is unnecessary.

According to the CDC the coronavirus is thought to spread similarly to how the common cold spreads: person-to-person spread, and contact with infected surfaces or objects. There are certainly ways to get out of the house without coming in close contact with other people and without coming into contact with surfaces that others have touched. For example, going for a walk or a bike ride. (In densely populated cities this will certainly be harder.)

Furthermore, socializing with friends who you trust shouldn't be too risky. From the CDC:

People are thought to be most contagious when they are most symptomatic (the sickest).
Some spread might be possible before people show symptoms; there have been reports of this occurring with this new coronavirus, but this is not thought to be the main way the virus spreads.

So then, if you know/trust that your friends are asymptomatic, and you trust that they are hygienic (wash their hands, wipe their counters, etc.), socializing with them shouldn't be too risky.

If it spreads like the common cold, how worried should I be about kissing people? Reason:

Kissing does not efficiently spread cold infection ... Of 16 susceptible recipients, only one became infected by a one or one-and-a-half minute kiss with an infectious donor.

Source: https://journals.sagepub.com/doi/pdf/10.1177/014556139407300906

3Adam Zerner3y
Interesting to hear that about the common cold. My first thought is that with the coronavirus, our risk tolerance is much lower, and even if the data point applied to the coronavirus as well, 1/16 still isn't great. So if it makes sense to take the precautions of washing your hands after touching surfaces that others have touched, it probably also makes sense to avoid kissing people. My second thought is that when you're kissing people it's probably going to be people you know personally and trust to be asymptomatic. But people can have the disease and be asymptomatic for weeks, so I'm not sure how much that helps.
and Yep, sounds right. :) Also right. Do you have any good pointers re: how much asymptomatic transfer there is? I've seen two things of note: 1. CDC director comment: https://www.cnn.com/asia/live-news/coronavirus-outbreak-02-13-20-intl-hnk/h_8d935a8b6df385aba0cbfdb30cd3aeac [https://www.cnn.com/asia/live-news/coronavirus-outbreak-02-13-20-intl-hnk/h_8d935a8b6df385aba0cbfdb30cd3aeac] 1. Two cases mentioned here: https://www.businessinsider.com/coronavirus-asymptomatic-transmission-chinese-woman-relatives-2020-2 [https://www.businessinsider.com/coronavirus-asymptomatic-transmission-chinese-woman-relatives-2020-2] Part of me is surprised about how little evidence there is of asymptomatic transfer. Either it's not frequent, evidence is hard to gather, it's not worth mentioning/publishing after a certain point, something else?
2Adam Zerner3y
Not really, sorry. The source that comes to my mind is the CDC [https://www.cdc.gov/coronavirus/2019-ncov/about/symptoms.html] ("Symptoms may appear 2-14 days after exposure") but I also just generally recall various sources/people talking about it.
Asymptomatic transfer pointer. Saw in an ea Fb group claims ~ 15% household asymptomatic household transfer rate https://www.medrxiv.org/content/10.1101/2020.03.03.20028423v1?fbclid=IwAR14euEgPp3UvxBI2zSk-ZPCbbBzEV8JbyVVofxdgwqJDkRBoVKzREJdM4w [https://www.medrxiv.org/content/10.1101/2020.03.03.20028423v1?fbclid=IwAR14euEgPp3UvxBI2zSk-ZPCbbBzEV8JbyVVofxdgwqJDkRBoVKzREJdM4w]

Does anyone have an update/ thoughts, on how safe it would be to take walks with asymptomatic friends one on one and keeping a distance of about 6 feet ?

Recommendation: cover the back of your smartphone in copper tape.

Reasoning: in addition to the reasoning for putting copper on all commonly touched surfaces, your phone is an especially good choice because of the "copper halo effect", in which copper ions move from copper surfaces to nearby surfaces (like, say, your hands), leaving them much less hospitable to microbes. [Edit: As MalcolmOcean points out, this mechanism for the halo effect isn't supported by the Wikipedia page below. I made a leap to this explanation without realizing it. That said, I do think that copper (and copper oxides) will get on your hands as a result of this tape, partly because I've seen my hands turning a bit blue.]


A downside is that your hands may turn slightly blue. [Also: See the comment below about uncertainty about how much copper you'll eat as a result of this; tldr: I don't know but I think it's probably fine]

[This is a signal boost for Lady Jade Beacham's response to Connor_Flexman, but the idea was originally introduced to me by James Payor]

palm rests of laptop are easy too.

Note that this can act as a Faraday cage around your phone and potentially reduce your reception.

With the fullback of my phone covered in copper I got ~0.2 Mbps on 4G. When I removed a 1 in.² on the upper left (where the antenna is on a Google pixel 3) it went up to 13 Mbps.

I assume having everything except for a small square covered is still pretty good, so I'm doing that.

Huh. This is quite important if true. Can anyone with a bit more physics/chemistry knowledge give an estimate for how long this will last on your hands, and how much coverage of your hands you will get? If this is a significant effect, it seems like a pretty useful piece of prep (copper on phones) that I am only just hearing about.

A thing I probably haven't thought enough about is, "how much this will impact your rate of copper ingestion, and is that very bad?" My guess is that this is less important than the effects on infectious disease; it seems like it would need to increase your copper consumption by 100x in order to produce major negative health effects (https://www.atsdr.cdc.gov/toxprofiles/tp132-c2.pdf). I may try to be virtuous and do a fermi on this later but also I'd welcome someone else trying to do it.

Edited to add:

The most obvious effect of having too much copper is ga

... (read more)
A bit more copper might actually be a good idea for people who also take zinc (see the zinc thread elsewhere in this post) as the body needs to keep both of these in some balance. Dangerous levels of copper seem highly unlikely just from touching but you should probably avoid lining your pots and pans: https://en.wikipedia.org/wiki/Copper_toxicity [https://en.wikipedia.org/wiki/Copper_toxicity]

The halo effect (section on wikipedia) didn't seem to me to be about ions... I figured it was just like how if we're nearby & I'm less likely to get sick, then you're less likely to get sick, separate from my sickness having any effect on your immunity.

Yeah, you're right that I imputed a particular mechanism that isn't supported by the Wikipedia page - thanks for pointing that out. I do still think that the ions-getting-on-things mechanism is part of the story, mostly because the reduction sizes are really large. This could indicate either (a) that most microbes end up on surfaces first via touch surfaces, and spread from there, or (b) that copper ends up on nearby surfaces. Or some of both. In this particular case, though, I think it's quite likely (because I've seen my hands turn a bit blue) that in fact copper and copper oxides are getting on my hands as a result of the tape.

I would much rather rinse a mobile phone regularly if it is water-proof (an increasing number is!) than use copper tape, although I would not use soap on the screen, to preserve its oleophobic properties; alternatively, if I were in a very susceptible group or if the virus were much more dangerous to me, I would find it more effective to put the phone in a plastic bag and either exchange it often or wash it as often as my own hands.

The thought process here is that copper tape cannot be applied to screens, which can end up very close to faces, but washing with soap is effective.

It is possible to both rinse your phone and put copper tape on it.

Another cost is that my hands smell like copper now.

Maybe we should put copper on our hand sanitizer bottles. But does it take effect quickly enough to matter here?

Advice: Apply lotion after washing your hands.

Reasoning: Heavy handwashing can dry out your hands, which can lead to cracks forming, which are more vulnerable to infection. You can fight this by applying lotion after washing your hands.

Sources: have experienced dry hands -> cuts personally, a dermatologist told me it was a vulnerability.

Related: CDC recommends washing with warm or cool water as opposed to hot, because hot water doesn't help more and is more likely to bother your skin. https://www.cdc.gov/handwashing/show-me-the-science-handwashing.html

A discussion / recommendation on handwashing versus sanitizer would be most welcome, I think. I have seen recommendations ranging from "always wash hands if possible, use sanitizer only if handwashing is not possible" to "use hand sanitizer unless your hands are visibly dirty, in which case wash them."

I am a bit concerned that applying lotion after handwashing is potentially a good way to re-contaminate your hands, unless you and everyone in your household is very careful about how you handle the lotion.

(I seemingly managed to give myself irritant contact

... (read more)
I've heard but have not researched that within the range of water temperature a human being can stand, the temperature isn't contributing anything to the anti-microbial effects. So colder water for more handwashing or less irritation might be free money.
CDC advises alcohol based sanitizers at least in clinical settings, IFF your hands are visibly clean - since it's more effective in that case, and less drying. (Note: it does not help if you have actual bits of dirt on your hands.)

Their advice for healthcare settings is to prefer hand sanitizer, because it's better at killing germs, it doesn't dry your skin as much, and you're more likely to actually use it. https://www.cdc.gov/handhygiene/science/index.html

Their advice for community settings is to prefer soap and water, as far as I can tell because you're more likely to have stuff on your hands (grease, dirt), and because kids might drink it. https://www.cdc.gov/handwashing/show-me-the-science-hand-sanitizer.html

This coronavirus-specific page seems to treat them interchangeably. https://www.cdc.gov/coronavirus/2019-ncov/hcp/guidance-prevent-spread.html

A link here would be fantastic!

There's also hand soap with build-in lotion: https://www.amazon.de/gp/product/B01G8NH5F0

Lots of products exist, but are you sure that it's as effective at killing germs, and keeping your hands clean?
Soap doesn't work by killing germs. It works by detaching them from your skin.
I thought this too, and then I read that coronavirus is an "enveloped virus" whose coating can actually be basically dissolved by soap & scrubbing: On reflection, I don't have a source I deeply trust for this. The quote above is from this tweet by a Johns Hopkins prof [https://twitter.com/KarenFlemingPhD/status/1233451607385202688]. Consider this a jumping off point for further investigation.
4Thomas Kwa3y
It looks like the lipid envelope is a feature of many viruses, including all influenza viruses: source [http://www.virology.ws/2009/04/30/structure-of-influenza-virus/]; Wikipedia [https://en.wikipedia.org/wiki/Orthomyxoviridae#Morphology] and the NIH [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074182/] corroborate.
Yes, and that's why putting lotion on seems obviously counter productive - it's keeping the skin moist.
The CDC recommends drying hands, because wet hands spread and receive microbes more easily. (Although that's microbes generally and they're not sure about disease-causing germs in particular). https://www.cdc.gov/handwashing/show-me-the-science-handwashing.html [https://www.cdc.gov/handwashing/show-me-the-science-handwashing.html] So I'd think that applying lotion and then, say, opening the bathroom door with lotiony hands will re-contaminate your hands. Doing it just before sitting at your desk for a while or going to bed might be a better time, so your hands can dry when you're not going to be walking around touching stuff.
I wonder about dryness and its effect on immune cells. Dryness can also kill certain immune cells, which can ultimately lead to a better environment for germs than if you had left the wound moist. My original source for this is a book on historical medicine that I can no longer remember, but a 20 minute literature check finds that modern wound care emphasizes keeping wounds moist (but not too moist, and not in all circumstances), both to prevent infection and promote faster healing: * Clinical and Financial Advantages of Moist Wound Management [https://sci-hub.tw/10.1097/00004045-200409000-00003] * Moisture and healing: beyond the jargon [https://www.ncbi.nlm.nih.gov/pubmed/10732640] * Formation of the Scab and the Rate of Epithelization of Superficial Wounds in the Skin of the Young Domestic Pig [https://sci-hub.tw/https://www.nature.com/articles/193293a0] * PREPARING THE WOUND BED 2003: FOCUS ON INFECTION AND INFLAMMATION [https://s3.amazonaws.com/academia.edu.documents/48007664/Preparing_the_wound_bed_2003_Focus_on_in20160812-29209-1y13pxv.pdf?response-content-disposition=inline%3B%20filename%3DPreparing_the_wound_bed_2003_Focus_on_in.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20200302%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20200302T180056Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=69bd22faef135c09bfb6b775af5672b20b30c9ca2ab351e1c7c485ca72baa3c5] I could imagine that handwashing is a similarly horseshoe shaped problem- too moist and you increase your hands' habitability for germs, too dry and you make it easier for germs to permeate your skin.
The German equivalent of Consumer Reports believes this to be the best hand soap product that's currently on the market in Germany in the class of products that aren't specifically antibacterial. For me that means there's no reason to believe this product is worth at keeping my hands clean. Using soap that's antibacterial seems to be a move that's bad for the commons as far as building up antibacterial resistance goes. Do you disagree there and think everyone should use antibacterial soap?

If the local case rate is not yet high enough to warrant quarantine, and you're hosting or attending events, then in addition to asking people to not come if they are sick or coughing, you also might want to implement fever screening.

Three studies of nCoV symptoms cited here found fever in 83%, 98%, and 98.6%. Studies are less precise on the exact timing of symptom manifestation, but fever appears to show up early. To screen people for fever, you need either an oral thermometer plus disposable probe covers, or a contactless infrared thermometer. A contactless thermometer is faster, but less reliable; if you use one, you will want to also have an oral thermometer plus probe covers to deal with false positives.

What temperatures should be used as cutoff when doing fever screening at events in the evening?

What's the risk in sharing an oral thermometer/how do you sterilize it effectively?

They make non-contact digital thermometers now. You could get one of those. Point and shoot.
You put a disposable cover over on it, eg these [https://www.amazon.com/Pack-Digital-Thermometer-Probe-Covers/dp/B073RCVR7T], which covers the part that goes in peoples' mouths. So the main risk is that everyone is touching the same object with their hands. You can mitigate that by also having them wash their hands or use hand sanitizer afterwards.

For me personally, self quarantine seems pretty unnecessary at this point, but I would act differently if I were in a different age group. Given the below death rates I would self quarantine if I were over 40. I would like to note I expect these death rates to be somewhat high because they are largely based on confirmed cases, which I expect to be disproportionately the worse cases that ended up in hospitals.

There was one case of Covid-19 in Solano county (CA) that couldn't be traced directly to travelers, which indicates community spread may be happening and Covid-19 may be spreading in the bay area.

Age  Death Rate
80+ years old  14.8%
70-79 years old 8.0% 
60-69 years old 3.6% 
 50-59 years old 1.3%
 40-49 years old0.4% 
 30-39 years old0.2% 
 20-29 years old0.2% 
10-19 years old 0.2% 
 0-9 years oldno fatalities 

Given the below death rates

Note that while your personal survival is quite important, getting infected and surviving can have quite awful effects. We don't know what the long-term effects are like yet (because we haven't hit the long-term yet), but I won't be surprised if post-viral fatigue is common.

Being ill is also unpleasant, and you become a risk to your community, and especially any elderly people in your community.

At least there is some evidence that the lung fibrosis that you were seeing in a lot of SARS survivors is not happening at nearly the same level.
Yeah, It's true we don't know the long term effects yet and being ill is unpleasant. I'm taking the minor precautions of not going to large public spaces (BART, Grocery Stores, Gyms) for a while.

These numbers are applicable when there are hospital beds and equipment and staff to treat the 20%ish of severe cases. When the hospitals get overwhelmed, the fatality rates will go up. By how much? I have a guess broken down by age here.

Note that there has been a second confirmed case of community transmission in the Bay Area. WaPo link

Great table to offer. Might be good to also update on some related state. Males seem twice as likely as females to contract the infection (not positive here if that also scales with age or not)

Also, those with preexisting condition (heart, lung, other immune system taxing states) are also more likely to suffer more, and be among those dying than those who are generally healthy.

I think there was also a suspected link between smoking and higher risk if exposed to COVID-19. That is probably too correlated with the other preexisting health conditions that might be too difficult to say much.

Regarding smoking, it of course damages your lungs making you more vulnerable to lung problems, but there is new evidence that it may increase the expression of the protein the virus uses to gain access to your cells, making you more easily infected.
I might then make the guess that vaping might also fit that profile. Should I be worried if I quit something like 30 years back? (mostly joking but might be interesting to know if there are data on that)

Note: I gave Finan a table using the new in-beta editor. Users in general still do not have editors available at the minute.

Consider that by quarantining yourself you're also protecting others from being infected (directly and indirectly) by you, some of whom may be in much higher risk categories. Given that we're still in the early stages of exponential growth, this seems quite significant.

Noting I am living in a group house and we are now being fairly strict in limiting outside social contact, using stored food or sterilization procedures for when we order things, and are putting more thought into our procedures going forward.

Thanks for the useful data and advice for younger people! Please remove the long laundry list of recommendations at the end :)

Edit: Thank you. I will now fix your table.

Buying a bipap + O2 concentrator + capnometer + Y juntures + tubing can decrease chance of death given being infected by about a third.


  1. Hospitals are going to be extremely overcrowded
    • Doctor I talked to said they would be in "big trouble" if even double the number of patients.
  2. There is a 5% chance of getting critical form of COVID (source: WHO report)
  3. Given you have a critical form and you cannot get access to a ventilator, there is a high chance that you will die (doctor I talked to have said ~70%)
  4. For any ICU patient in a ventilator, there's a non-trivial chance that that patient can survive with a bipap + O2 condenser

You probably need around 5L/min of 90% O2, which theoretically requires a medical grade condenser that requires a prescription. I, however, see no reason why getting 5 normal O2 condensers that can deliver 1L/min of 90% O2 and connecting them all with Y junctions won't work.

[Edit: you can probably do with 4L/min of 70% O2, so you'll need 2 O2 condensers. This advice is mostly based on priors and like 20 minutes of research. The crucial point is that you'll likely need at least 2 O2 condensers]

These devices should all be relatively easy to use. Many people use a bipap for sleep apnea. Many people with respiratory problems have their own O2 condenser that they use. The capnometer I'm less sure of, but there should be a simple flow chart on what to do. If there isn't, I will make one by talking to doctors.

The reason you need the capnometer is because giving people too much O2 also has its own host of problems.

Here's a model of the expected value of buying such a system for only 1 individual: (https://www.getguesstimate.com/models/15306)

This model assumes that there is 0 hospital capacity and it's only for 1 person. Model also doesn't take into account reduce quality of live because of the chance of chronic fatigue syndrome. Model also assumes 20% chance of getting COVID, which is pretty low. Disjunctions are more probable, so the value goes up rapidly with more people, but has a max because it can only be used on one person at at a time.

Bear in mind that the probability that a 2nd person you care about getting COVID conditioning on 1 person you care about getting COVID is pretty high because the people you care about hang out together.

The total cost is about 2k for the bipap, 5 * 400 for the O2 condensers, and 1k for the capnometer for 5k total.

If you think that more than 10% of the world is going to get COVID, buying 1 such setup for like 20 people is an obviously correct move given the model.

Things to watch out for: cheap chinese models of both of these devices.

Edit: took Daniel Filan's suggestion of adding Y juntures and tubing to the first line.

Do you have any thoughts on where to buy a bipap and a capnometer? Can you get them without a prescription? Are they sold on amazon? If you or anyone else manages to get this to work (or even just starts buying supplies for it), I'd love to know where they obtained all their supplies and what they ended up needing.

9Thomas Kwa3y
I'm working with Mark to figure out the details. We'll have an update within a few days if and when we find a working setup.

I guess people also need to buy Y junctures and tubing? If so, worth putting that in the first line IMO.

Hi Mark and others, thanks for sharing this info. Two questions:

1. When using the O2 concentrator, can we test for oxygen levels using Pulse Oximeter instead of capnometer? Looks like we need a prescription to buy a capnometer.

This paper finds that "During PSA in adults breathing room air, desaturation detectable by pulse oximeter usually occurs before overt changes in capnometry are identified." :


So, a pulse oximeter should suffice?

2. In the WHO report, they say: " About a quarter of severe and... (read more)

There is a 5% chance of getting critical form of COVID (source: WHO report)

That's a 40-page report and quickly ctrl-f:ing "5 %" didn't find anything to corroborate your claim, so it would be helpful if you could elaborate on that.

I'm also interested in estimates for this number. I'm very confident that 4-5% is the right ballpark for total number of infected people who are going to need hospital care, but unsure about whether there's a lot of age-related skew or not. I've seen people say that hospitalization doesn't come with a large age-related skew, which would be alarming (for young people) indeed!
2Thomas Kwa3y
Here's the quotes we used; from pages 12 and 32. As far as we can tell, these proportions for severe and critical symptoms are at hospital admission. Mark I first made this estimate here [https://www.lesswrong.com/posts/RukXjEvMfqDKRJaup/what-will-be-the-big-picture-implications-of-the-coronavirus#a9rJZL9FQxXqm3jrB]; we have updated downwards since then on estimates of untreated mortality on weak evidence that the current international strain is less severe [https://www.forbes.com/sites/lisettevoytko/2020/03/04/discovery-of-2-strains-of-covid-19-coronavirus-hints-at-how-it-evolved/#4fa60ecc7094] than Hubei's, and slightly upwards as testing in China and other East Asian countries becomes more thorough with fewer additional mild cases than we thought. Also note that the 70% mortality without a ventilator/o2 for critical cases was assuming the basic medical care of an overcrowded hospital, even if equipment is not available. Medical care for pneumonia is primarily supportive, but doctors I've talked to say there is significant risk of developing complications like sepsis that require admission. This introduces more uncertainty into our estimates due to the number of moving parts.
[-][anonymous]3y 1

(EDIT: ignore this paragraph, it's not true) I've seen this discussed on another forum. Apparently, medical grade condensers require the patient to be put in a pharmacological coma so that their body doesn't fight all that air being shoved down their lungs. Makes sense since usually only stuff that's potentially harmful requires prescription.

Also, I've seen open discussions in at least one democratic country of confiscating privately owned condensers for the public healthcare. So if you end up buying some equipment, you will want to keep your mouth shut and perhaps use cash if possible.

1Mark Xu3y
I'm confused by what you mean by "medical grade condensers". AFAIK, the type of condenser I'm talking about just delivers high oxygen content air through a nasal cannula or a face mask. I think you might be talking about ventilation, which involves shoving a tube down the patients throat and forcing high oxygen air in and out of their lungs. Could you point me to where those discussions happened? I'd be interested in seeing whether government confiscation is likely to happen and maybe if I can make it more probable in some way. (I think that government confiscated currently unused oxygen concentrators and distributing them to hospitals is probably a very good thing.)
Thank you, you are right re. condensers. I confused them with ventilators. Re-reading this thread, it's great to see that condensers alone greatly increase the chance of survival. In that case I won't assist you. I appreciate your honesty, though.

Mark - any thoughts on producing a system like this in crazy scale (say 10-100K/month) for altruistic purposes (i.e., to save lives not to make money)? Please DM me if you'd be willing to discuss.

If you develop a dry cough, do take cough drops and sip liquids to prevent yourself from coughing.

Reasoning: I've seen one doctor claim this is helpful because one of the causes of severity is how deep into the respiratory system the virus is able to travel. Apparently lower respiratory infections are more severe because the immune system has a harder time fighting it. Coughing tends to drive the virus deeper into the respiratory system.

When getting restaurant takeout or delivery, put the food in an oven and bake at at least 70C/160F for 30 minutes to kill the virus. To minimize contamination, I put the whole package containing the meal into the oven, wash my hands, then operate the oven. (This assumes that only the packaging and outside of the food is likely to be contaminated, because the inside is hot enough to kill the virus already. If this is not true for the meal you're getting, increase the oven temperature or time enough to thoroughly heat the food to 70C for 30 minutes.)

This also works for mask reuse (which is where I got the idea from originally). (This article says "The new coronavirus is sensitive to heat. It can effectively inactivate the new coronavirus by heating for 30 minutes at 56 degrees Celsius." but does not cite a source for this. I wasn't able to find a study for the COVID-19 virus, but did find the following data for SARS: https://link.springer.com/article/10.1007/s00430-004-0219-0/tables/1)

Thanks, this is a question I really wanted someone’s numbers on!

You said 70C for 30 mins, then said it again but I thought you were going to say a more extreme quantity the second time. Was that intentional?

The second time, I meant "increase the oven temperature or time enough to thoroughly heat the food including the middle/inside of the meals to 70C for 30 minutes." So the idea is that if you're not sure only the outside of the meals may be contaminated, you need to increase the oven temperature/time but I can't tell you by how much because that depends on the specific food, so you'll have to figure that out yourself or use a meat thermometer.
2Ben Pace3y
I see, thanks.

I just thought of this idea: carry a box of disinfectant wipes everywhere, and whenever you want to touch a surface that's touched by many people (handrail, door handle, elevator button, touchscreen kiosk...) give it a quick wipe-down first. That protects you, helps protect other people, shows them how to do the same, and also disinfects your hands many times a day. Any problems with this?

I like the general idea. I used it the other day when I went to Starbucks and to the library.

Alcohol can damage some touchscreens, dunno about those public ones. The other problem might be that you'd be drying your hands more often.

Figure out now who will take care of you if you get extremely sick and who you will take care of if they get extremely sick.

Making these expectations explicit could pay off. Different people have different norms around what level of care vs avoidance should happen when someone is sick. If you became extremely sick, you might lose the coherence necessary to arrange help for yourself.

Work out at home instead of at the gym.

According to the CDC the coronavirus is thought to spread similarly to how the common cold spreads: person-to-person spread, and contact with infected surfaces or objects. The gym is a place where you'll be in close proximity with other people, and where you'll be touching surfaces that many other people have touched, and thus is a place where the risk of getting infected is high.

On top of that, the downside to working out at home seems quite low. There is so much that you can do without gym equipment (burpees are awesome if you don't mind the intensity), and there are large diminishing returns to exercising more and to exercising more efficiently. Plus, changing up your routine is good for both effectiveness and for fun.

Advice: have disposable wipes by the front door and use them to wipe your smartphone and then manipulate your handwashing sink each time you arrive home.

Model: You are touching your smartphone while out, and to whatever extent possible you want surfaces inside your home to be controlled. CDC recommends disinfecting touchscreens but many people don't because disinfectant can damage special coatings. One can bite the bullet or consider adding on another screen cover.

I have been disinfecting my smartphone and glasses with disinfectant wipes, and have had no problems with coatings so far. I haven't used them on my computer screen; I know the antireflective coating on the macbook screens can be sensitive.

My disinfectant wipes are neither alcohol nor bleach, but quaternary ammonium (with a list of ingredient names all having the form "...yl ammonium chloride".) My sense is that this seems to be typical of generic "disinfecting wipes".

They are basically surfactants that work by disrupting cell membranes [https://en.wikipedia.org/wiki/Quaternary_ammonium_cation [https://en.wikipedia.org/wiki/Quaternary_ammonium_cation]]

I started to self-quarantine from 25 January, reasons: uncertainty in mortality and the need of a test run. At that moment the situation with mortality was not as clear as it is now. I still don't exclude higher mortality level (than in the table) as for many patients the disease is around one month long and this data is not accumulated yet. I also more than 40 years old and have hypertension which is a risk factor.

My observations about self-isolation: I eat more, and as a result my stockpile is going quicker than I expected. And also I gained weight. Also, sometimes I feel my self like in a prison and want to go out despite any risks. After I go out eventually, I felt more tired as possibly first sign of atrophy of muscles. All this means that long term self-isolation has its own risks, mostly cardio-vascular and mental state.

This test-run of self-quarantine helped me to perfect protocols of cleaning things after I went out and of proper wearing masks. Not all masks fit equally well, and it depends on the shape of the face.

What are the benefits of "don't go outside at all" vs "don't take walks, if you make sure to never be within 10 feet of people?" (I suppose how achievable this is depends on where you live. I guess I couldn't do it in NYC, but could do it in Berkeley easily)

I'm curious about this too. My partner and I love to go out on night walks, around 12-3am. Our apartment door opens directly to an open to the outside hallway and we very rarely encounter others at this time. Therefore I assume that even under a self quarantine situation, it should be fine to continue these walks?
Having full face mask will be actual protection as well as gloves. .
I live in an apartment complex in a large city, so I am likely to meet people near elevator. There are also a lot of people on the streets during the day and to reach nearest park I need to walk 15 minutes by streets. Maybe I can walk outside at 3 AM.
1Brendan Long3y
It wonder if this would be a good use case for normal face masks. Presumably they decrease the distance the virus would travel if you coughed (and also warn other people to keep their distance). Unfortunately I'm having trouble finding any research on this (everyone seems interested in masks to protect the wearer, or long term use, not short term use to prevent infecting others).
CDC says 6 feet [https://www.cdc.gov/coronavirus/2019-ncov/about/transmission.html] is safe, but not what that's based on.

I used to think CDC recommendations were not great but better than nothing. I've changed my mind after seeing them say coronavirus can't survive on surfaces for very long, so I'm retracting this comment.

I had heard the 6 feet rule (which roughly matches my "how far I think people can usually spit"), but didn't know where I had heard it from, and scaled it up a bit for additional margin of error based on my intuitive knowledge of cough physics.

I wonder if ensuring one has an exercise plan (or perhaps some equipment -- could be DIY type equipment) should not also be on the list of items to "stockpile" if one is self-isolating or even under quarantine.

I never really thought about that before you mentioned it, but I have an orbital machine in my workshop/garage so take that from granted.

I have difficulty in motivating myself to exercise at home.
That's why I have a tv and what foreign language files with subtitles. Bigger distraction ;-)

I think you should try to get antibiotics, antivirals, and/or antifungals for secondary infections in case hospitals are full and you need to treat yourself. According to this study, “When populations with low immune function, such as older people, diabetics, people with HIV infection, people with long-term use of immunosuppressive agents, and pregnant women, are infected with 2019-nCoV, prompt administration of antibiotics to prevent infection and strengthening of immune support treatment might reduce complications and mortality.” About what treatment people in Wuhan were given, the study says:

Most patients were given antibiotic treatment (table 2); 25 (25%) patients were treated with a single antibiotic and 45 (45%) patients were given combination therapy. The antibiotics used generally covered common pathogens and some atypical pathogens; when secondary bacterial infection occurred, medication was administered according to the results of bacterial culture and drug sensitivity. The antibiotics used were cephalosporins, quinolones, carbapenems, tigecycline against methicillin-resistant Staphylococcus aureus, linezolid, and antifungal drugs. The duration of antibiotic treatment was 3–17 days (median 5 days [IQR 3–7]). 19 (19%) patients were also treated with methylprednisolone sodium succinate, methylprednisolone, and dexamethasone for 3–15 days (median 5 [3–7]).

I think this sort of treatment might be one of the biggest factors in lower mortality for people with access to hospitals, so I suspect that getting your hands on some prescription antibiotics beforehand could be quite valuable. Some of the pharmacies that Wei Dai recommends here could be good bets, though I'm still currently trying to figure out what the best way is to do this—if anyone has any ideas let me know.

This not-particularly-reliable source says "So far, there have been very few concurrent or subsequent bacterial infections, unlike Influenza where secondary bacterial infections are common and a large source of additional morbidity and mortality".

Check the active ingredient of your hand sanitizer. You may have one that contains benzalkonium chloride, which does not work against at least one type of coronavirus. (This turns out to be the case for one of the hand sanitizers I've been using.) Get one that has "greater than 60% ethanol or 70% isopropanol" instead, as recommended by CDC.

ETA: I didn't bother to check this until today, because why would the FDA approve or fail to pull from the market, hand sanitizers that don't work against an important group of viruses? And why hasn't there been any articles in the MSM about this?

That study is on inanimate surfaces, and benzalkonium chloride is the main ingredient of Clorox, Lysol and other disinfectant wipes. So it might be a good idea to switch to isopropanol wipes for surfaces too.

I'm pretty sure this can't be correct--they claim benzalkonium chloride has zero effectiveness, which is less than plain water! I think it has to be a data entry error.

This review cites some other studies that show benzalkonium chloride to be comparable to other disinfectants, although alcohol is still best by a considerable margin.

Do cardio exercise—at home or jogging (not gym for transmissibility reasons, as mentioned in this other answer.)

Why cardio, and why now? My thinking is: a primary reason for COVID hospitalization is not being able to get enough oxygen (cf this answer), and its primary treatment is with concentrated oxygen or (in more severe cases) mechanical ventilation, and the nightmare scenario is not having concentrated oxygen equipment etc. for the number of people who need it (I guess some appreciable fraction of the 20% of cases that require hospitalization). So it seems highly plausible to me that starting from a state of good cardiovascular health (hence high blood volume, high lung capacity, efficient heart pumping, etc.) would give the body some extra slack such that COVID can gunk up the lungs slightly more and for slightly longer, before you suffocate and die. This speculation is also compatible with the COVID death rates being apparently higher in populations that I would guess have generally worse cardiovascular health (in terms of age, pre-existing conditions, etc.). Again, to be clear, I have no proof of a causal connection, or even proof of correlation, just a vague suggestion and plausible-seeming mechanism (to my non-medically-knowledgeable mind).

By the way, my experience is that, after a long exercise hiatus, there's clear improvement in "not feeling out of breath" over the course of even the first couple weeks of cardio exercise, so it's not too late to get started. :)

Here's my personal tips on (what I find to be) a practical and sustainable home cardio exercise routine, and injury-free jogging. Also see comments on this answer.

In the worst case that it does nothing to help with COVID, hey, starting an exercise routine is still an awesome idea for mental health, longevity, etc. :)

(PS: Don't overdo it, I hear overtraining is counterproductive.)

Just saw this thread on a subreddit for medical professionals suggesting this could be a bad idea:


Update March 4

I've done an extensive analysis of the disease and Impact of a Pandemic. http://tinyurl.com/sv5v4vc

I'll excerpt my On Masks Section as I suspect the reasoning contained within will be the most appropriate and interesting to this thread. But there is good stuff throughout, I've built things for lay readability, and am not a technical expert, I would appreciate thoughts and advice. I don't have variables for mask exposure, but I think my reasoning is solid and useful. You can tweet me @qastokes

About N95 Masks

All non-N95 face masks, such as medical masks, (of the dental kind), are relatively useless for self-protection, as they lack a seal. Please donate your excess to medical facilities. These are very useful for containing the spreading of all illness, those who are sick and coughing, regardless of disease, should find and wear these type masks. Containing spread is far more effective than reducing exposure for managing the risks.

Please understand N95 isn't prevention, it's odds increase. When properly fitted and used it reduces exposure, but technically it's only 95% efficient. An N95 might keep a doctor with constant exposure alive, but won't help Joe who's out shopping much. Wearing a mask could theoretically increase your risk if used wrong, by being a capture of virus that moves along with you and extends your exposure time. It is not generally helpful, compared with handwashing and effective prevention protocols.

It is true there is benefit to be had by using a mask. But it is only significant if you are competent in following the use protocol. It is better by far to learn & to carefully follow all the other higher impact protocols, especially handwashing. By far the greater benefit, for you individually considering your total exposure risk across time regarding the disease and it's spread, around you to managing your personal exposure will be for those managing the disease directly to have the best protection they can. Hence my advice to donate extra masks to those at highest risk.

Think about this along the lines of "the more the disease spreads, the greater your total exposure risk, regardless of managing your personal exposure risks."

Note: For really significant improvement in your exposure chances, I & wearing a mask effectively, you will need to carefully follow the behavior protocol for a disposable full body exposure management system. A protocol which includes gloves, a hooded tyvek particulate suit, and goggles, along with the mask, this is only really applicable in an extremely exposing environment. Additionally, a P100 would be the optimal mask of choice for this situation and protocol.

The biggest risk management benefit comes from one complete set of masks and a full body exposure management system for every one of your loved ones. This allows you the freedom to make one situation optimizing decision in a worst case scenario.

This would look like: The family is out of food. Healthcare is overburdened to the point the death rate has matched the critical cases rate. You must move with high risk of high exposure.

Alternately, with planning these suits can also be burned one use at a time in a clean room caring for a loved one, allowing for several days of constant and very direct care with low gain viral load & exposure risk for those still without symptoms or as yet uninfected.

Note for completeness: of all the routine contexts to wear a mask, high droplet spray environments are the ones the mask will help in the most, especially if you sanitize your clothes afterwords. I would strongly consider wearing one in a crowded subway, if there is a known outbreak in your city. This would only significantly help if you wear the mask correctly, sanitize clothes, & don't touch your face and are meticulous about hand washing.

Advice: Humidifiers. We need them now, and everywhere that people gather in temperate climates. There's a reason why the common cold, influenza, and indeed SARS all die out as summer approaches in seasonal climates--relative humidity over 40% is the best method for controlling airborne viruses.

Influenza season has been ending every spring, (https://journals.plos.org/plospathogens/article/file?type=printable&id=10.1371/journal.ppat.1003194) long before DNA tests, masks, or alcohol sprays. Humidity under 30% like we regularly encounter in buildings during winter occurs naturally very rarely. It degrades our immune defenses and increases the longevity of airborne viruses.

"The present study allowed us to assess viral infectivity under various levels of relative humidity and showed that one hour after coughing, ∼5 times more virus remains infectious at 7–23% relative humidity (RH) than at ≥43% RH." https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583861/

"Low ambient humidity impairs barrier function and innate resistance against influenza infection" https://www.pnas.org/content/pnas/116/22/10905.full.pdf

Need to get the news out. I wrote a Medium article on it: https://medium.com/@crissmanloomis/the-end-of-the-covid-19-outbreak-d578092282c8

What's your model for how useful this is? COVID spreads in public places, and it's mostly spreading via droplets on surfaces. Changing indoor humidity seems like it would only have a very minor impact, if any.

In many ways COVID19 is irrelevant. It's already spreading in multiple countries, and is very likely to become endemic. However: It is not alone, there will be future viruses. We should be looking to create habits that will protect us from both COVID19 and all future local epidemics and pandemics. That means habits that can be maintained indefinitely, not short-term changes that are not sustainable. Things like washing hands and using hand sanitizer and creams are habits you can learn and maintain. Checking everyone for fever, selling your stocks to buy X is not sustainable, and so these behaviours will be quickly forgotten.

This makes little sense to me. Viruses are different, spread differently, and will react differently to environmental changes.

And I do not understand why checking for fever routinely is less tractable as a routine habit than, say, using humidifers. And distracting from exclusively promoting handwashing seems like a huge net negative, given that we still haven't gotten people to change their habits.

I don't know whether I'd be willing to use a regular thermometer every day, but I'm getting daily temperature data as an automatic byproduct of using the Oura sleep tracking ring.
1Steven Byrnes3y
Agree, unless someone reading this happen to be in a position to determine the HVAC settings of a workplace, store, etc. Or if you host gatherings in your home.

It is almost 90 degrees in Singapore, and the humidity is almost 90 percent. and it spreads...

TLDR You may be able to use a rice cooker, instant pot or pressure cooker to sanitize disposable masks after wearing them, although this will slightly damage the mask.

Due to the worldwide mask shortage, it seems inevitable that many people are going to have to reuse masks. Personally I have 2 masks per member of my household which seems troubling low.

It may be possible to decontaminate masks - I found a paper that reviewed 5 mask decontamination methods, both a review of how they affected the mask, and a review of how effective they were at decontaminating. The papers are very technical, so please double-check my interpretation

Takeaway - here are the 5 methods in the first paper:

  • Rice Cooker
  • Autoclave (similar to pressure cooker)
  • 10-minute submersion in 70% ethanol
  • 10-minute submersion in 100% isopropanol
  • 10-minute submersion in 0.5% bleach solution

All methods of decontamination damaged the masks. It seems that alcohol and bleach significantly damaged overall filter quality (ratio 0.30 to original), but rice cooker and autoclave relatively preserved it (0.98 to original). I can't see the results for the IPA method on their chart but I expect it to be similar to the other chemical methods.

The other paper on sanitizing efficiency also looked at UVC and UVA light. It found "Bleach, UVC, an autoclave, and a <rice cooker> provide better biocidal efficacy than ethanol and UVA".

My conclusion in this is that rice cookers, pressure cookers and especially the instant pot - which offer comparable performance to commercial autoclaves can be used in an emergency situation to sterilize masks for a few uses. Be very careful about the way you don and doff the mask and handle them generally.

The CDC recommends using "...a cleanable face shield (preferred) or a surgical mask over an N95 respirator..." for extended use or reuse. This may make it more difficult to breathe, but perhaps worth trying. Surgical masks are also not so available these days, but maybe something like a bandana or other covering would also help protect the mask.


A lot of stores are using touchscreens now meaning you're touching the same spot as literally the entire flow of customers before you and no one ever cleans those. But you can use a touch screen stylus. I got one with a cap so that I can carry it more easily without contaminating other surfaces.

Advertise that you are seeing the smoke.

From the article:

As Eliezer reminded us, most people sitting alone in a room will quickly get out if it starts filling up with smoke. But if two other people in the room seem unperturbed, almost everyone will stay put. That is the result of a famous experiment from the 1960s and its replications — people will sit and nervously look around at their peers for 20 minutes even as thick smoke starts obscuring their vision.


The goal of this post is twofold. First, if you’re the sort of person who will keep sitting in a smoke filled room until someone else gets up, I’m here to be that someone for you.

If results of the experiment are real, I think we can expect 1) people to hesitate to take the coronavirus seriously, 2) people to take it more seriously if they know that you are taking it seriously. We want people to take it seriously, and so advertising that you take it seriously — as Jacobian did — seems like a good thing to do.

This could mean texting your family and friends, or posting on social media (in such a way that doesn't incite panic).

Consider that some people may be higher yield targets of your advertising than others. Someone who is capable of changing their mind, has the option of working from home and who lives in a densely populated area is an example of a high yield target.

Nutrition seems to have some influence on the effects of viruses.

Make sure you're not deficient in selenium or vitamin E. One brazil nut per day is enough to give you more than the RDA for selenium.

Note that selenium deficiency is relatively common in central China. The average selenium level in Hubei isn't low, but it has a large range of levels, and the person with the lowest level in that study was from Hubei.

There are also some reports that vitamin C might be valuable. But there's some concern that large doses of vitamin C are risky if you have high iron levels (usually measured by a blood test for ferritin).

I expect that nutrition has a pretty low probability of helping, but it also has a pretty low cost.

It is recommended to avoid touching your eyes, nose, and mouth[1]. People tend to inadvertently touch their eyes, nose, and mouth many times per hour[2]. If you think you can substantially reduce the number of times you touch your face by training yourself to avoid doing it, in some low-effort way, go for it. If it takes time to become good at not touching one's face, it may be worthwhile to start training at it now even if where you live is currently coronavirus-free.


[1]: The CDC (Centers for Disease Control and Prevention) writes:

The best way to prevent illness is to avoid being exposed to this virus. However, as a reminder, CDC always recommends everyday preventive actions to help prevent the spread of respiratory diseases, including:


  • Avoid touching your eyes, nose, and mouth.

[2]: The video by the CDC that Davidmanheim linked to claimed: "Studies have shown that people touch their eyes, nose, and mouth about 25 times every hour without even realizing it!"

I've been trying to reduce my face touching for more than 6 months now as part of a project to get less colds and only managed to really get there in the last 2 months. I also work in a lab with gloves where I have to take care what I touch a lot, which is daily training. Still I have found it frustratingly hard not to do it, so I don't know if many people can quickly train themselves.

Things that help me:

  • have paper tissues around and use only them to rub nose/eyes
  • scratch face with inside of clothes (less obtrusive than it sounds)
  • wear gloves in public (
... (read more)

I shaved my beard. I've only had it for about 6 months, and I played with it constantly and unconsciously. Since shaving it off, I bet I'm touching my face 10% as often at most, and only fleetingly.

2Ben Pace3y
Ah, I guess I should do this too. Thx.

I've managed to not bite my nails for the past ~3 weeks (longest stretch of my adult life!) thanks to that special kind of transparent nail polish that make your nails taste bad :-P

2Ben Pace3y
As a classical guitarist I naturally keep the nails on my RH long, but I read advice to cut them because they are harder to keep clean underneath and carry disease longer, and I'll probably do that. I'll probably shave off my beard too for similar reasons (and to stop me touching my beard+face as much.

I discovered a way to practice this recently, I was drawing with vine charcoal, which is dark and very dusty, and I got dark dust all over my hands. Then I touched my face inadvertantly and I could see in the mirror where I had touched.

Later I tried to wash it off and was able to wash it off only when I really focused on how I moved my hands in order to scrub any area. The entire thing felt like good practice with hand higene. So to practice this, improvise a colored dust - charcoal, ash etc, and practice washing hands and not touching face.

Social engineering-- ask your friends and family to tell you if touch your face. Do the same for others.

One piece of advice is to keep your hands below shoulder level when you are in public spaces to avoid the temptation to touch your face.

If you have long(-ish) hair, wear something that will keep your hair off your face.

Rationale: I'm training myself not to touch my face, and more often than not, I want to do so to get my hair out of the way.

Also, I touch my hair very often (to fix its position) but I wash my hair much less than I wash my hands, so if my hair regularly touches my face, it's plausible that I'm at greater risk of catching the virus through my hair rather than through my hands.

It seems like you should never touch buttons outside your house with your fingers. Carrying around an object like a pen that's wrapped in copper tape to push buttons allows you to use buttons without touching them with your fingers.

When it's hard or impossible to avoid touching one's face or staying 2 meters away from others, wear a combination of ski mask, safety or medical goggles, and surgical mask. This would prevent touching one's face and having droplets land on one's face.

This made me wonder 'Can coronavirus spread through open eyes?' (https://www.quora.com/Can-coronavirus-spread-through-open-eyes) given I had heard it was spreading through the lungs, but I'm not actually sure about the eyes.

Track your sleep quality and make sure you are getting enough. There are smartphone apps (like Sleep Cycle) that can do this. Your immune system is one of the first things to go with even mild sleep deprivation, which makes you more susceptible to infection. You may have to adjust the timing or dose of your caffeine intake. You might also consider melatonin (see Scott Alexander's guide for optimal timing and dose).

Gargling (even with water) might be a relatively good intervention: https://pubmed.ncbi.nlm.nih.gov/16242593/

Gargling with salt water is a traditional method of treating sore throat/tonsillitis/swollen sub-mandibular lymph nodes.

I'm getting a little obsessed with garlic so I'd gargle with a garlic solution after the salt...

Here's a guesstimate model I made to try and figure out when hospitals will become overwhelmed. Lots of model uncertainty here that I'd appreciate advice on, but the current prediction is that there will be a hospital bed for you if you get infected in the bay area within the next 6 days (95% confidence within the model: actual confidence is much lower).


I'm super happy to see quantitative models, but moving this to comments because it doesn't cash out into specific advice.

If hospitals are overwhelmed, it's valuable to have a component of the hospital treatment plan for pneumonia on-hand to treat either yourself or others who have it especially bad. One of these is oxygen concentrators, which are not sold out yet and are ~$400 on Amazon. This doesn't deal with especially severe cases, but for cases which fall in the "shortness of breath, low blood oxygen" class without further medical complications, it'd probably be useful if you can't or don't want to go to a hospital due to overload. https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected mentions oxygen treatment as the first thing to do for low blood oxygen levels.

I think I would feel guilty if I bought one of those, and then learned later that they're sold out, and the people building temporary hospitals can't get them.

I bought this one [https://smile.amazon.com/gp/product/B083WDZLXJ/ref=ppx_yo_dt_b_asin_title_o01_s00?ie=UTF8&psc=1] online (the cheapest device I could find advertised as capable of pulse flow, which may be important [https://www.lesswrong.com/posts/LwcKYR8bykM6vDHyo/coronavirus-justified-practical-advice-thread?commentId=9aBNZzR6dJ2E9QGMZ]), and it's going to take about a month to arrive. I suspect this device is manufactured outside the US--if people in the US are having a hard time getting ahold of them quickly because it takes a month to ship them from overseas, I can donate mine. Due to exponential growth, much of the expected impact of COVID-19 is in April/May/June. I feel pretty comfortable prepping now and sending a market signal that we should ramp up the production of prepping goods.

Good idea. I purchased an oxygen concentrator. However, you might wish to use the device on a low pressure setting (or use it in "pulse" mode instead of "continuous" mode) because I'm hearing some rumors that oxygen therapy can be counterproductive:

Professor Liu Liang also said that if the mucus components are not resolved in the treatment, the use of oxygen alone may not achieve the purpose of treatment, and sometimes even counter-productive, pushing the mucus deeper and wider, aggravating the patient's hypoxia.


... (read more)

WHO report indicated that 75% of severe cases only needed oxygen. Only 25% needed forced respiration + suction. So this seems good.

Do your shopping in bulk in order to minimize the time you spend public. Or do your shopping online and have it delivered.

The more time you spend in public, the higher the risk you get infected. Shopping in bulk minimizes the time you spend in public, and thus lowers the risk that you get infected. For example, stocking up at Sam's Club versus going to the supermarket twice a week.

I suspect that for most people, the downside of shopping in bulk or shopping online is going to be very minimal. In many cases I suspect that it is optimal even without the coronavirus being a thing.

Also consider the experimental benefit. If you don't have much experience with shopping in bulk or online, trying it out for a few weeks will give you a better sense of what your true preferences are.

Advice: now may be a good time to learn to meditate. Deaths from coronavirus are due mostly to breathing problems from pneumonia, which is the main explanation for why older people are more likely to die. There is evidence that meditation is good for pneumonia specifically http://www.annfammed.org/content/10/4/337.full and lowers oxygen consumption generally https://journals.sagepub.com/doi/full/10.1177/2156587213492770. I didn't read the studies carefully to see how trustworthy they are, but this conforms well with my understanding and limited experience of meditation. Meditation is also known to be good for mitigating stress, which will obviously be beneficial in the coming months.

There's a theory that BCG vaccine (TB) helps strengthen you against corona, I'd recommend getting it if you haven't, or especially for your older relatives (given that the cost/side effects is well-understood and near-zero, whereas the benefits based on the below could be serious):

https://www.mpg.de/14610776/immune-boost-corona-virus https://www.sciencemag.org/news/2020/03/can-century-old-tb-vaccine-steel-immune-system-against-new-coronavirus

(looking at the correlation between vaccination rates by country and corona spread).

Very speculative: there are different strains of BCG, and allegedly the old (Soviet/Japan/Brazil) type/types is better. This could theoretically explain the different corona case loads between West/East Germany and between Japan + Thailand + Taiwan vs China + Iran (different vaccine strains).

Here are images showing differing corona case loads between East/West Germany (East uses/used the Soviet vaccine), supposedly the population density does not explain this (though note travel patterns, testing rates, etc. are probably all different):



Much more at https://www.jsatonotes.com/2020/03/if-i-were-north-americaneuropeanaustral.html?fbclid=IwAR2MKAgIt2IRjPSf_S9F4HozW4z7BWjH9_9D5p3RmGGJtdh2wp5gkpdzOj8&m=1. If someone who actually understands vaccines could read this and provide thoughts and vet, that'd be great. If it does end up making sense, please do spread, given the high expected value benefit here. I just don't know how easy it'd be to find old (Soviet etc.) style vaccines in the West.

I'd recommend getting it if you haven't, or especially for your older relatives (given that the cost/side effects is well-understood and near-zero, whereas the benefits based on the below could be serious):

I would recommend doing more research before making recommendations like the above. tb-throwaway.

Start here: NHS Who should have BCG?.

To quote one line that you could investigate:

There's no evidence the BCG vaccine works for people over the age of 35.
@leggi, thanks, I think the key thing here is that BCG isn't used to protect you against TB here, but broadly boost your immune system. I found a bunch of papers on this (admittedly, many about youth, but also some on the elderly getting BCG): https://www.ncbi.nlm.nih.gov/pubmed/25725054 https://www.ncbi.nlm.nih.gov/pubmed/21979284 https://www.ncbi.nlm.nih.gov/pubmed/27737834 https://www.sciencedirect.com/science/article/pii/S1931312817305462?via%3Dihub https://science.sciencemag.org/content/352/6284/aaf1098 https://www.bmj.com/content/355/bmj.i5170 https://www.who.int/immunization/sage/meetings/2014/april/3_NSE_Epidemiology_review_Report_to_SAGE_14_Mar_FINAL.pdf https://www.bandim.org/-/media/arkiv/projekt-sites/bandim/pdf/bhp-vaccines.pdf?la=en https://www.clinicaltherapeutics.com/article/S0149-2918(13)00014-3/pdf https://www.mpg.de/14491738/0219-mpin-116799-modified-tuberculosis-vaccine-as-a-therapy-for-cancer-of-the-bladder [https://www.ncbi.nlm.nih.gov/pubmed/25725054 https://www.ncbi.nlm.nih.gov/pubmed/21979284 https://www.ncbi.nlm.nih.gov/pubmed/27737834 https://www.sciencedirect.com/science/article/pii/S1931312817305462?via%3Dihub https://science.sciencemag.org/content/352/6284/aaf1098 https://www.bmj.com/content/355/bmj.i5170 https://www.who.int/immunization/sage/meetings/2014/april/3_NSE_Epidemiology_review_Report_to_SAGE_14_Mar_FINAL.pdf https://www.bandim.org/-/media/arkiv/projekt-sites/bandim/pdf/bhp-vaccines.pdf?la=en https://www.clinicaltherapeutics.com/article/S0149-2918(13)00014-3/pdf https://www.mpg.de/14491738/0219-mpin-116799-modified-tuberculosis-vaccine-as-a-therapy-for-cancer-of-the-bladder] What I want to call out in the context of the elderly: https://www.ncbi.nlm.nih.gov/pubmed/21979284 [https://www.ncbi.nlm.nih.gov/pubmed/21979284] BCG has also been used for decades to boost immune system in fight against gallbladder cancer, as immunotherapy: https://www.cancer.org/cancer/bladder-cancer/treating/intravesical-therapy.html [https://w
The top set of links aren't working but the study to URTI rates is very interesting. Firstly for the use of 3 doses a month apart - one dose is the standard for BCG. I had a BCG at about 7 years old due to contact with a diagnosed TB case. Age 11 I had a positive reaction to the tuberculin skin test (Mantoux) but still got given a second dose, even though I told the school nurse it wasn't recommended - cocky little sh!t even back then and I'm sure she stamped me twice as punishment... Now thinking good for me! Also, that there was a strong immune response in elderly subjects who tend to be considered as having a weaker immune system overall. Testing at 6 months from 1st dose: Memory B cells are present "for decades" so for those that have received the BCG this effect should apply. For bladder cancer: A different mode of action than a standard BCG vaccination, not so much boosting the immune system but drawing attention to the cancer cells in a localised manner. Regarding the "cytokine storm" seen in severe patients - would previous vaccination make this worse? Musings, no idea what reality will be. But countries with vaccination programs v. those without should provide some interesting data. Did you come across any information about any specific antibodies have been associated with COVID19?

This is likely to: (a) last for months, not weeks - so don’t bother stockpiling, you can’t store enough to outlast it. (b) affect 60-80% of an unimmunised population (all of us) with a doubling time in confirmed cases of 2-3 days initially. (c) produce minimal symptoms in the majority of cases (by minimal I mean nothing you cannot handle with over the counter analgesics, plenty of rest and your favourite hot drinks) just like the currently endemic corona viruses. (d) be moderately lethal for older people, especially smokers & those with existing respiratory / cardiovascular conditions. (e) become endemic (annual, like flu & colds) unless we get a vaccine.

Solution? Keep calm & carry on, hoping your government is transparent and has your best interests at heart.

If it's more important for you to avoid contracting the virus right now than it is for others, schedule any doctor's appointments you are going to for first thing in the morning. Reasoning: seems like hospital contamination should rise throughout the day as more and more people pass through and then drop during nightly cleanings. Similarly for any needed outings, do it in the morning, because though the virus can survive for days on surfaces, presumably it's safer to touch just after an 8 hour break from people than just after a 2 minute break from people. No idea of effect size but I don't see why these mechanisms would be wrong.

Get fully vaccinated, preferably using the Moderna vaccine.

https://www.microcovid.org/paper/14-research-sources#moderna--pfizer says "[the] CDC released a study showing 90% reduction in all cases (symptomatic + asymptomatic) 14+ days after participants received Moderna or Pfizer’s vaccine".

It makes sense for anyone competent enough to give consent for the vaccination unless you are known to have an allergic reaction to a component of all available vaccines.

While I suspect the option for non-cash payment will remain it is possible that in some cases having cash on hand might be needed. If so, you probably don't want to go to the bank/ATM and get something that may have passed though a bunch unknown hands.

I am thinking that suggests two things.

1) Make an assessment of your potential cash needs and get them sooner rather than later. Two reasons here. Lowers the chances of being contaminated. You can then set it aside as well as do some sterilization and let sit (to dry?).

2) You might not want to get large bills but more smaller denomination. That way you can simply leave the change and not worry about accepting anything back.

Again, might have been suggested but a quick search on cash and currency didn't get any hit.

Advice: drink a mouthful of water every 15 minutes. This is speculative (facebook post from a friend of a friend). The rationale is that if you have virus particles in your mouth, rinsing them into your stomach (where the stomach acid kills them) will prevent them from getting into your respiratory system. [edit: retracted, seems to be downstream from a fake news article. Drinking water is still good, but looks like this pathway is not realistic]

[This comment is no longer endorsed by its author]

14 Related Questions

The first death in the Philippines was a Chinese tourist as far as I understand.
7Answer by Steven Byrnes3y
I don't think there's enough evidence on COVID19 to say much, but this blog post [https://www.marklwebb.com/2020/03/covid-19-epidemiology-is-useful.html] has suggestive evidence from Google Search Trends that previous coronavirus infections have dropped steadily over the course of March and April. (Presumably this data is dominated by the northern hemisphere.) ETA: A much better idea is to read this blog post by someone who actually knows what they're talking about [https://ccdd.hsph.harvard.edu/will-covid-19-go-away-on-its-own-in-warmer-weather/]
from where have you the information about travel ban from thailand? can you pls post the source?
3Daniel Kokotajlo3y
Spreading slower might be sufficient. If it spreads slowly enough, the containment methods already in place will work.
3Daniel Kokotajlo3y
Maybe they know something we don't. Or maybe they are just being cautious. Or maybe they are even overreacting. All I'm saying is, this is evidence but not strong evidence.
Almost certainly lack of testing community acquired cases.
3Daniel Kokotajlo3y
Is that just your guess, or is it confirmed that they don't bother to test community members of infected people?
4Answer by Adam Scholl3y
This study [https://www.pnas.org/content/115/14/3623] suggests some airplane seats expose passengers to significantly more infection risk than others. I'm confused by the writing, but my understanding is that window seats are best. I would also guess, though I can't tell if the paper is suggesting this, that you're at less risk if you don't use the bathroom, have row-mates, or sit where people are most likely to pass you going to the bathroom. If true, one could potentially reduce risk significantly by buying out a row far from bathrooms, limiting water intake, and sitting near the window.
>60% alcohol hand sanitizer kills many viruses, including the coronavirus. It is not that effective against the norovirus, however.

The CDC's recommendation against face masks is a bald-faced lie, intended to prevent individuals from buying them and conserve supplies for health care workers. Wearing a mask incorrectly makes it less effective, but does not reduce effectiveness to zero; it seems obvious to me that, if masks were plentiful, they would be mandatory (as they were in 1918) rather than discouraged.

I'm *extremely* sympathetic to the position that the CDC is untrustworthy and have my own example, but it strikes me so extremely consequential that it would benefit from a more complete justification in a top level post. I'd be happy to collaborate on writing and/or research if that would lower the barrier to entry.

Is touching you face a problem or is the problem touching the places on your face that allow the entry for the virus? If just touching my cheek or jaw line is a problem then why isn't the virus on my hand not also a direct problem?
Touching your jaw or cheek should be no direct problem for you since you need to get the virus into your airways to get infected. It may be a problem for others since you may have lots of virus particles on your jaw / cheek form sneezing. Also getting stuff from your jaw or cheek into your mouth nose or eyes is more likely than from your hands.
Pubic hair moderately protects only against those STDs which infect skin cells and are transmitted by skin-to-skin contact: herpes, HPV, molluscum contagiosum. Respiratory viruses do not infect skin cells and people aren't rubbing their faces together, so there's no plausible method of action here.
4Answer by Elizabeth3y
Note that Prime Now, Amazon Fresh, and Amazon Pantry are all different services with different availabilities, and I can often find things on Prime Now that aren't on Fresh (haven't even tried with Pantry). Delivery slots haven't been abundant but can typically be found within 2-3 days.
3Answer by Dagon3y
Seattle-area groceries are mixed - some doing well at social distancing (have 6-foot spacers marked for a line outside, and letting in limited shoppers, with more going in only after some come out), some not so much, especially at peak times. Early morning (before 7) or late morning (after opening rush, before 11) seem quietest. Employees and shoppers about 30% likely to wipe down basket and cart between uses, about 20% surgical mask usage, haven't seen a N95+ in a while. I feel pretty good with double-mask and nitrile gloves, and wiping down handles before use with a chlorine or alcohol wipe. Driving is pretty safe, alone. It's probably worth going by a few different stores to find the one you're most comfortable with before going in. If you're walking or using public transport, your options are more limited. The best plan for your food stockpile is to replenish and use it. Keep 3-5 weeks, shop when you're down to 3.5, buying up to 5.
Most or all the 24-hour grocery stores here (bay area) have converted to having closing hours, as far as I know, to help them deal with the logistical problems caused by overwhelming demand. You might expect this to happen in your area too, at some point.
I just checked, and you're right! From 24 hours to closing at 10pm. Looks like 6am is the next least visited time.
3Answer by James_Miller3y
Amazon Fresh doesn't deliver to my address, but with Amazon Prime, Amazon pantry, and Walmart.com I can still get a lot of food delivered to my door. I put packages in my basement (without touching them) and keep them there for at least 3 days before opening. If you don't have a basement, I suggest you put packages into a large garbage bag and leave them untouched for at least 3 days.
I live in a hot region, and have a car parked outside. I've been putting non-heat-sensitive packages in there for a day, since interior temperatures should be going above 130F / 55C, and easily killing any viruses.
3Patrick Long3y
Ooh, good idea. Amazon Fresh seems to be working OK again. I didn't realize Pantry was separate from it until today, but that helps too since Pantry can just schedule to deliver 3 weeks out instead of having to keep going back looking for unavailable Fresh delivery times. I don't have a basement, but I do have a car. I stored my initial stockpile there just to differentiate it from normal food and not start eating it too soon. But contactless delivery+leaving stuff in there for longer than the virus can survive on its packaging makes this a lot easier.
2Answer by John_Maxwell3y
(Edit: See update comment below) I emailed Sarah Constantin about this question. I didn't end up hiring her (my parents decided they didn't want to take supplements--luckily they're working from home now), but she did say: So I think taking immunostimulants on an ongoing basis is a good idea, but you should stop if you think you might be infected with COVID-19.
Update: Apparently some have been interpreting this Twitter thread [https://twitter.com/ordovas_phd/status/1240043356975173634] as an indication that the virus may take advantage of immune system activity to infect you? Which could mean that immunostimulation is bad?
From the WHO report [https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf] you linked to (page 36): Something I find interesting to point out.
I've just come across this: COVID-19 HOST GENETICS INITIATIVE [https://www.covid19hg.org/] A project that's just starting (110 studies registered as I post) but may yield some interesting data in the future. Being able to release the least susceptible from lock-down and increasing herd immunity. Targeting limited vaccination supplies to the most susceptible. Although a high specificity antibody test will be the game-changer.
The supplement effects seem marginal, from your description. And focusing on them may detract from focusing on what is likely to help, which is the laundry list of measures to reduce exposure. So, when you talk to your parents, discussing potential changes in their routine might be a more useful approach.
A 40-50% decrease in infection risk seems pretty big to me.
If consistently confirmed and not offset by "I'm taking supplements/wearing a mask and therefore can go out more", then yes. But the uncertainty in that 40% decrease in risk is probably on the order of 200%.

This question (“will I get infected if people in my household are sick?”) was asked in the recent Reddit AMA with experts. Keep in mind I didn't verify the original sources.

“It is possible to stay uninfected! Yesterday in a press briefing, Dr. Nancy Messonnier at the CDC said that the secondary attack rate among family members of confirmed COVID-19 cases in the U.S. is 10.5% so far. So that means that about 1 in 10 family members who have been exposed by a relative have gotten sick.”

Here’s the posting and some more c... (read more)

7Answer by Mvolz3y
Thinking about it with a toy model: Assume you on average contact 25 people a day when you go out, and each of your housemates each also contacts 25 people a day. Also assume if they become ill, you're 100% likely to get it from them. (These are not necessarily realistic assumptions, so please don't infer anything from these particular numbers!) This means that if you go out, you're effectively contacting 100 people a day (75 of these by proxy.) If you stay home you're reducing your total number of effective contacts from 100 to 75, so a 25% reduction. This is still an overall reduction in your total exposure. Whether that reduction will be enough for you for it be worthwhile depends a lot on the specific numbers. These numbers include the overall risk of infection per contact (at present likely low but could increase, also depends a lot on where you live), how many contacts you and your housemates actually have, and the probability of getting it from them if they do get infected (probably a lot less than the 100% assumed here).
2Eli Tyre3y
My plan would be to not leave my room, except to take out the trash and to go to the bathroom. And I would shift to any early schedule. So I shouldn't have much contact with my housemates, and would be doing my best not to touch the items they touch (and maybe disinfecting doorknobs / bathroom stuff before I touch them, if that's practical). So the factor that I'm most interested in is the one you assumed was 100%: if one of my housemates contracts the disease, how likely am I to catch it, and how much can I reduce the probability?
That factor is called the secondary attack rate [https://onlinelibrary.wiley.com/doi/abs/10.1002/0470011815.b2a04049]; I've seen values ranging from as low as 10% in one study (which has garnered a lot of scepticism) and in some larger studies, ~ 40%. Preventing transmission in a shared space is very difficult. I can't give specific estimates as to how much any of the measures you mentioned would reduce that likelihood, unfortunately.
5Answer by FactorialCode3y
In my model, the threat of phones is that they undermine the benefit of washing your hands, because nobody washes their phones/pocket when they wash their hands. Picture the following scenario: 1. You touch a contaminated surface 2. You check your phone 3. You wash your hands 4. You check your phone 5. You eat finger food. You now have the virus, as it has piggy backed onto the back side of your phone. If you didn't have your phone, washing your hands would have been effective.
I agree with this, but one thing I wonder about -- how much virus is transferred at each stage? Viruses (unlike bacteria) strictly cannot reproduce outside the human body. So there should be a zero-sum (really negative-sum) process happening in these kinds of contamination events. You ought to end up with a lot less virus on your phone the second time, in the above sequence, than the first time -- right?
This touches on something I've been wondering about -- but suspect it may well be a purely academic type question. Viral infections (possibly all infections) is largely a random chemical reaction that occurs. The virus has to randomly bump into the right type of cell (perhaps with the right orientation) and perhaps the right part of the cell. In fact, the virus could bump into something that effectively neutralizes the virus. So what are the probabilities for that event? Given the infection rates, clearly the combination of both the quantity of viruses and the probability of success for any given virus is pretty high. But still, I wonder about the one virus probability of success. Then we would also have some clue about just how far we can expect all the hygiene effort is really going to accomplish.
See my comment with Alcor's response [https://www.lesswrong.com/posts/BioLd2Qrnsc2uj6XC/cryonics?commentId=c3ZuJ4bNe397E2xsu]
Alcor posted A message to our members about COVID-19 [https://www.alcor.org/blog/a-message-to-our-members-about-covid-19/]:
Blake Honiotes, Alcor's Medical Response Director, wrote (sharing with permission):
new update:
Update: Alcor has written to its members, and it seems pretty well prepared for the pandemics; see my comment on this
I suspect that you are better off investing wisely and buying a lump-sum membership at some point in the future, say, when you are in your 40s.
Just fyi, I have found [https://niplav.github.io/considerations_on_cryonics.html] that that is (probably) not the right decision (especially conditional on you believing signing up is a good idea in general).
1Answer by avicennah3y
Answer depends on several things 1. Where you met, temperature, humidity, degree of ventilation 2. Distance and intensity of interaction and exchange of fomites 3. Degree of infectivity (were they coughing and their viral shedding; where they are in illness course) 4. Hygiene, theirs and yours, including hygienic behaviors 5. Your level of immunity (are you already immune, are you immunocompromised, etc)
Do you have a sense on how it depends on any of those things?
Transmission risk 1. Goes up with humidity and down with more ventilation and warmer temperatures 2. Higher with smaller distances and fomites Infectivity 3. Increases with greater viral inoculate (which goes up with more shedding), which is also greater with 4. reduced hygiene and direct contact with mucous membranes. Even at smaller inoculates, 5. an immune incompetent host has higher chances of infection. Happy to provide citations for anything you’re specifically curious about.
Thanks. The thing I'm ultimately looking for though is more like "at humidity X, your likelihood is Y". I know roughly how the variables fit together, but not enough to decide "do I let a random person who might have covid into my house or not?"
3Answer by arikr3y
This medium post provides a pretty good answer for this question: https://medium.com/swlh/so-youre-going-outside-a-physics-based-coronavirus-infection-risk-estimator-for-leaving-the-house-d7dcae2746c0 [https://medium.com/swlh/so-youre-going-outside-a-physics-based-coronavirus-infection-risk-estimator-for-leaving-the-house-d7dcae2746c0] And see also the related calculator: https://sygo.mardillu.com/ [https://sygo.mardillu.com/]

I'm hoping that we've gained more information about this in the past month. If anyone is able to assemble the current bits of evidence we have bearing on this (either from Covid itself, or similar illnesses), I'd still super appreciate it.

That's not particularly useful without the base rate of infection in those provinces, and it appears to at least double count (assuming 'close contact' is a reciprocal relationship, every case of two people in close contact both being infected would count as two cases of a close contact being infected). Based on the upper estimate of 2.5 for R_0, those numbers suggest that the average person has fewer than 50 'close contacts', and likely even fewer.
5Answer by jimmy3y
It's important to note that unpleasant emotions are functional when faced with a new threat that one hasn't prepared for; the whole point of emotions like fear is to reorient ourselves towards the reality we find ourselves in and come up with a more informed (and therefore hopefully more effective) response. It is always unpleasant to realize that things aren't quite as nice as we've been hoping and planning on, but the actual information hazard would be things that "protect" people from the emotion that could have protected their life and well being as well as the life and well being of their loved ones. What you're talking about doing is the opposite of an information hazard. That said, there are a few things that can be important for doing it right. One is that you want to draw very clear boundaries between the position you advocate and alarmism. You're pushing for integration of scary information as well, not for blindness to good news and the potential for optimism. You don't want to push people from "white thinking" to "black thinking", you want to encourage people to take in all information and pick the most appropriate shade of gray given the current information available. Not only is some shade of gray more accurate than pure black, making this distinction clear will help you persuade people. When people are primed and ready to "not give into alarmist/doomer thinking", you don't want them to pattern match you as this opposite form of irrational thought. If you have had/seen any conversations about this where people are saying "it's not the end of the world" in response to statements like "it's not 'just the flu'", this is what is going on. You're seeing them argue against what they don't want to believe rather than what is being argued. I would make sure to include and emphasize everything optimistic you can without sacrificing accuracy, and make sure you're not trying to "push one side" as much as offer more information as someone who can see both the
2Answer by brianwang7123y
It was only a matter of time before somebody tried this: https://www.biorxiv.org/content/10.1101/2020.03.13.991307v1.full.pdf [https://www.biorxiv.org/content/10.1101/2020.03.13.991307v1.full.pdf] From the abstract: "Here we demonstrate a CRISPR-Cas13-based strategy, PAC-MAN (Prophylactic Antiviral CRISPR in huMAN cells), for viral inhibition that can effectively degrade SARS-CoV-2 sequences and live influenza A virus (IAV) genome in human lung epithelial cells. We designed and screened a group of CRISPR RNAs (crRNAs) targeting conserved viral regions and identified functional crRNAs for cleaving SARSCoV-2...The PAC-MAN approach is potentially a rapidly implementable pan-coronavirus strategy to deal with emerging pandemic strains. "

I downvoted this comment (as well as your comment below) for strongly pushing misinformation. As others have noted, the CRISPR/Cas9 system has evolved in bacteria precisely to target viral genomes — "CRISPR is not able to target viruses at all" is simply false. "...and also does not destroy the things it targets" is also false, in a sense; a well-targeted Cas9-induced double-stranded break in the DNA/RNA of a viral genome can certainly disable a crucial viral gene and reduce viral replication, even if you don't consider this... (read more)

2Donald Hobson3y
Non paywalled link to same content (PDF) https://sci-hub.tw/https://doi.org/10.1016/j.tim.2017.04.005 [https://sci-hub.tw/https://doi.org/10.1016/j.tim.2017.04.005]

This is actually pretty similar to the original function of the CRISPR/CAS9 system in the wild. Wild bacterial CRISPR systems copy short RNA segments complementary to bacteriophage DNA, then use those to target and destroy any phage DNA within the bacteria. So it's definitely something which could work in principle, and is already used by some bacteria.

That said, at this point it would probably be harder to immunize against a virus using CRISPR-based techniques than using traditional vaccines. Just injecting a bunch of CRISPR protein machinery and bit... (read more)

1Donald Hobson3y
cas9 can be set to target arbitrary DNA sequences, it is part of a bacterial virus defence mechanism. If you have your cas9, in a cell, and then a virus tries to infect it, the viral genome will get chopped up. I don't think viral DNA works when chopped up, especially as the researchers can cut somewhere that will do lots of damage, like in the middle of a gene that makes a key protein. This is assuming that you can get cas9 into cells.
"Does damage to DNA" is not a feature that distinguishes CAS9 from bleach. Also, coronavirus does not contain DNA; it's an RNA virus. You're completely on the wrong track.
2Donald Hobson3y
https://phys.org/news/2018-03-crispr-cas9-rna.html [https://phys.org/news/2018-03-crispr-cas9-rna.html] Cas 9 cuts rna too.
I'm also planning a trip to Chicago in a about two weeks for the same reason. I've been arranging to move there and I just got back to California, where I am currently trying to push my moving arrangements forward. Any comments on this? It's probably a much less great idea to wait that long if I don't have to.
1Answer by Beyondfucked3y
With so many unknowns about covid, and how it's transmitted, or how long it remains active on surfaces, it sounds dicey. With a finite number of planes and the high number of travellers arriving @ places with the virus, you have to wonder if there are any planes left that aren't potential transmission transit tubes. So many places in those closed environments for covid to hide. I'm guessing the ability fully sterilize a jetliner has to be nearly impossible.
2Answer by Dagon3y
I suspect you won't be able to estimate with small enough error bars to know whether the marginal increase in risk of infection by one plane ride is more or less than the reduction in risk by the more comfortable and (presumably) less metropolitan place in Arizona. My intuition is that if you compare it to any major coastal city, you're better off in AZ, even considering travel risk. Even more so if this is a change from urban to low-density suburban living and you do actually semi-quarantine (only go out rarely, and only at times of low crowds). IMO, the main problem with flying is the airports, which have a high density of people who've recently been at a large variety of places. If you can arrange to fly to and from regional airports without international flights, that's probably a plus. All that said, I still rate the overall risk for healthy young to middle-aged US urbanites to be fairly low. I recommend most of your optimization to be on the comfort and short-term-panic-survivability side of things, more than the minimization of exposure to the virus. For that criterion, AZ seems like a clear win for you.
6Answer by rmoehn3y
I don't know how much this one helps, but it's not on your list: – Pathogens On A Plane: How To Stay Healthy In Flight [https://www.npr.org/sections/goatsandsoda/2014/07/14/319194689/pathogens-on-a-plane-how-to-stay-healthy-in-flight]
4Answer by jmh3y
My understanding is that the air filters for the cabin air are very good. Still both a mask, possibly eye protection and protective clothing and gloves will make the risk approach 0. I would also suggest staying away from food and drinks on the flight, 3 hours is not too long a time. Since you probably will not be directly interacting with many people on the plane, your risks in flight are probably lower than going to the local grocer or drug store. For a possible data point, I want to say I saw a picture of some of the evacuees and not all we're wearing masks. Given that I don't think everyone one of them tested positive I suspect the risk is limited to who is sitting next to you (window seat might minimize that) and the crew. All of this is speculative, other than the flight air filters (high confidence that is correct).
1Answer by Bildoon3y
I find this doc useful. https://docs.google.com/spreadsheets/d/18oVRrHj3c183mHmq3m89_163yuYltLNlOmPerQ18E8w/htmlview?sle=true# [https://docs.google.com/spreadsheets/d/18oVRrHj3c183mHmq3m89_163yuYltLNlOmPerQ18E8w/htmlview?sle=true#]
1Answer by Dustin3y
I use Home Assistant [https://www.home-assistant.io/] for my home automation needs. It has a coronavirus sensor [https://www.home-assistant.io/integrations/coronavirus] which pulls from the John Hopkins data. I then do two things with that data: 1. I have HA configured to send notifications to my phone when deaths and confirmed cases change by X%. 2. I use the influxdb integration with HA to ship the sensor data to...influxdb. I graph that data with Grafana [https://grafana.com/].
5Answer by PeterH3y
This website is compiling links to datasets, dashboards, tools etc: https://coronavirustechhandbook.com/ [https://coronavirustechhandbook.com/]

Edit 2020-03-08: I made a Google Sheet that makes it easy to view Johns Hopkins data for up to 5 locations of interest.

If you want to get raw data from the Johns Hopkins Github Repo into a Google Sheet, use these formulas:

=IMPORTDATA("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-Confirmed.csv") =IMPORTDATA("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-Deaths.csv") =IM
... (read more)
2Eli Tyre3y
Excellent. I was just starting to figure out how to do this.
2Eli Tyre3y
Amazing. Thank you!
7Answer by Ouroborus3y
I'm finding this Spreadsheet [https://covid2019.azurewebsites.net/?fbclid=IwAR2fjWWFry28oppvv-czkIOu2Ejc3EFH1mlQS7alzsQKRwEh_ibYe1P16vg] useful. Like it's one thing to see current numbers, but it's also useful to see the numbers for each country and a graph.
I took the liberty of assuming you meant "my question" not "by question" and fixed it.
72 comments, sorted by Click to highlight new comments since: Today at 5:31 AM
Some comments are truncated due to high volume. (⌘F to expand all)Change truncation settings

Most advice here seems to be of the form "here's a thing that has a benefit" or "here's a thing that has a benefit, and the cost is low". But without an estimate of the relative magnitudes of the costs and benefits, it's hard to know whether taking the advice is worth it. I wish that more advice included this type of cost-benefit analysis, perhaps with a parameter of how bad things are so that one could say, for example, "it's worth it to do this thing if you think X proportion of your city will eventually be infected".

There is probably an optimal humidity level, but looking at data from other viruses is producing very mixed results about what that level might be. Does anyone else want to dig through some more papers? This might also be a case where better data will be available in a few weeks.

This study found that environmental humidity was positively correlated with nCoV rate of spread. This paper measured surface persistence of SARS, and found that it persisted less at moderate relative humidity (50%) than at low (20%) or high (80%) humidity. This paper tested MERS-CoV, and found that increasing humidity from 40% to 80% decreased persistence on steel, but increased persistence on plastic.

How much do I need to worry about reinfecting myself? If I catch COVID-19 and enter perfect quarantine, does leaving viral particles on the lightswitch and picking them up the next day matter?

So the SARS virus exhibits, at least in the lab, Antibody Dependent Enhancement which is what can allow a virus to affect you multiple times. Here's a paper on it. Since COVID-19 is related to SARS it seems plausible the reports of reinfection are real. I don't understand this enough to say much more about it.

Is this a good place to put questions that I want answered?

Is there some reliable source on the triggers for quarantining one's self? Both immediate triggers (when x happens, I will not leave the house again until y happens), and warning signs (when z happens, I'm going to leave the city, in preparation for quarantine).

This article attempts to answer this: https://medium.com/@adamgries/how-to-decide-when-to-take-precautionary-action-about-coronavirus-covid-19-and-what-to-do-an-78d8bf231ebb [https://medium.com/@adamgries/how-to-decide-when-to-take-precautionary-action-about-coronavirus-covid-19-and-what-to-do-an-78d8bf231ebb] Quoting from it:
My answer is an attempt to do something similar. Note that I think strictly speaking you can do without self-quarantining: my impression is that if you go outside and aren't within 2 metres of other people, you don't have a serious risk of aerosol infection, and if you can manage to avoid touching stuff (or wear gloves, refrain from touching your face, and throw them out upon getting inside) then you avoid contact transmission. So going on hikes seems fine to me, and means (a) you don't go stir-crazy (b) you get some exercise.
I guess ideally there would be separate models of: * when to refrain from public transit * when to refrain from visiting stores * when to refrain from visiting work * when to refrain from being outside at all etc.
Given the status of the related questions feature, yes.
You could ask a related question!
I actually weakly recommend against that for the immediate future – there's some features I plan to implement that'll give related questions more visibility (I might prioritize getting them done soon), but right now they don't work that well in practice.
4Ben Pace3y
I chatted with Ray, I think that related questions is a good fit for this. People will primarily find the related questions via this post at the current time, which actually makes it pretty good for spamming with questions. Eli, I'd be pro you submitting a related question (it goes where the answer box is).
2Eli Tyre3y
I copied and pasted my question here [https://www.lesswrong.com/posts/k6QfEQAhJaJtzoJmJ/what-should-be-by-triggers-for-initiating-self-quarantine-re]. (Although I now read more carefully and see that you were pro "submitting a related question", which is maybe not the same as asking the same question twice.)

Reusable respirator guide

  • In scope: information about half-facepiece reusable respirators. Out of scope: whether you should wear a mask, etc.
  • Reasons to prefer a reusable respirator over a disposable one: they're (i) more comfortable and (ii) prosocial, preserving disposable masks for medical personnel.
  • You need to buy two components: the mask and filters.
  • The mask. The wirecutter recommends 3M's 6500 series. I have the next model up, from the 7500 series. The 7500 comes in three sizes, small (7501), medium (7502) and large (7503). I think the idea of the sizing is: medium fits most, but there are also small and large (evidence: some stores only stock mediums). If you are familiar with the size of my head, I'm a medium. If outside the US, say in Australia, 3M masks might be hard to find, so you might try other brands like Sundstrom.
  • To disenfect the mask periodically, you can soak it in disenfectant.
  • The filters. These come in a vast number of options and it's all quite confusing. A good source of information is this 3M guide. For viruses, we're interested in particulate filtration. Summarizing page 3 of the 3M guide, a filter is described by a minimum efficiency
... (read more)
The University of Texas at Houston, McGovern Medical School, Department of Otorhinolaryngology also has some good summarized advice [https://med.uth.edu/orl/wp-content/uploads/sites/68/2020/04/Elastomeric-Respirators-P100-B-Howard-2020-03-30-REV.pdf]for P100 masks. They recommend 15 mL of bleach per gallon for sanitizing the mask. Also, I have the impression that as long as the filter is not visibly soiled and it is not hard noticeably harder to breath with the respirator on compared to when you are not wearing the respirator, then the filter can be used indefinitely. Most filter replacement schedules assume that you are working with some sort of vapor that will attack the filter rather than using P100 filters for particular protection alone.

I've been struggling with the question of whether I should leave the SF area to go to my parent''s house in the suburbs of Virginia, and I expect other people are facing similar conundrums. I'll share my thoughts on it below and would welcome any advice especially anything that I have not considered.

Background: My parents (both 50 - 60) live in a detached house in the Virginia suburbs. It's very large with 3 floors and many bedrooms and has an inlaw unit. I currently live with 3 roommates, one of whom is my partner, in a tiny apartment in downtown San Francisco. 2 of those roommates have jobs in SF, another is unemployed but unconcerned with the virus, and I'm unemployed, living off saved income and very concerned. Currently we are all asymptomatic, but my partner did fly to Canada last week and has been isolating with no symptoms.

I'm considering whether to take my partner and fly to Virginia to be in our parent's house, likely early next week. Thoughts

  • I expect the transmissibility of the virus to be much lower in the suburbs since they are so much more isolated - people driving around in private cars, each with large lots of land. The
... (read more)
8Adam Zerner3y
Something you seem to have not thought of is that if you stay in SF, you'll probably feel more anxious than if you were staying with your parents. Both due to the risk of getting the virus, and due to questioning whether you should get out of SF. I know that I personally would have those anxieties.
I thought this was the pretty clear cut answer before you wrote it. Totally endorse. Wear masks on the flight if possible. Ask your parents to stock up or start sending prep packages there (Amazon, Costco delivers)
2Chris Hibbert3y
This doesn't seem to be advised unless you have professionally fitted N95 masks. Surgical masks and nominally fitted serious masks do a decent job of preventing you from transmitting the virus, but little to protect you. And anecdotally, wearing a mask may cause you to touch your face and mask a lot more, which is on the wrong side of the trade-off.
I think it's actually not hard to fit N95 masks reasonably well at home. You can google for the fitting guidelines. The most important thing is being aware that you need to pay attention to fit. A good fit is important, but a completely perfect fit is not required to get substantial protection. (If you have facial hair, as I do, you will face significant challenges. Otherwise I think good fit is straightforward to achieve. I think it's easier to achieve with reusable masks than disposable paper ones, but then you have to worry about disinfecting the mask between uses. I have a question below related to this.)
2Adam Zerner3y
What's the state of delivery in your parents' town? Not having to go to grocery stores is worth a lot.
Depending on where the suburbs are delivery is an option. I'm just outside DC (Fairfax County). I suspect Richmond would be similar. Farther south, not so sure.
1Ŀady Jade Beacham3y
Thank you for your input. I would like to go but I want to bring my partner with me and she is against it, I think because it feels extreme. My brother thinks it would be dangerous to my parents to travel to them, my father thinks it is inevitable to get the virus everywhere so it would be useless to travel to them. It feels like each is uncomfortable with taking action and justifying that feeling with a different faux-logical screen. Sigh. I'd like to go and I'll work on convincing my partner. We went out for dinner today which strengthens my suspicion that as long as we remain here we won't ever really isolate. My parents have said that I am welcome to come and quarantine in the in-law unit. Thanks for your advice. EDIT: My partner started to cough, which increased my estimation that we might be incubating it. Still very low chance but it made bringing it home to my parents a more real possibility. I decided to stay and risk it in the city

The killer advice here was masks, which was genuinely controversial in the larger world at the time. When we wrote a summary of the best advice. two weeks later, masks were listed under "well duh but also there's a shortage". 

Of the advice that we felt was valuable enough to include in the best-of summary, but hadn't gone to fixation yet, there were 4.5 tips. Here's my review of those

Cover your high-touch surfaces with copper tape 

I think the science behind this was solid, but turned out to be mostly irrelevant for covid-19 because it was so dominantly airborne. The tape turned out to be hard to remove, which caused a bunch of annoyance for people who moved a few months later.

Treat newly delivered packages as contagious for 48 hours.

Also made irrelevant by the low fomite rate

Take vitamin D supplements daily

The evidence for this has only gotten stronger since we wrote this up, although vitamin D has such a strong fandom you can never be sure.

Buy electrolytes to drink if you get ill

I don't know anyone this ended up being a big deal for, but it was low cost and I still believe there are low-frequency scenarios where it would have been very helpful. 

Maybe: Buy a pulse ox... (read more)

For food, I just purchased a week's worth of Soylent powder. Here was my reasoning (feel free to critique because I might purchase more):

  • Soylent powder is very easy to store and takes a long time to go bad. Thus it makes a very good disaster preparation food.
  • It doesn't require heat to prepare, and therefore would be helpful even if the power went out.
  • It's relatively cheap compared to other prepared foods. I got it for $1.50 per 400 calories.
  • It's nutritionally complete, or at least is sufficiently nutritionally complete that it's very unlikely that you would suffer any long term consequences from relying on it for a few weeks to months.
1Ŀady Jade Beacham3y
I bought soylent along with rice, beans, dried mushrooms, dried vegetables, cured sausage, etc. I think soylent is useful but I wouldn't want to consist on it fully.

I'm wondering how well viruses stick to/survive on clothing. In trying to avoid touching my face, I've occasionally resorted to using sleeves of my hoodie instead – which I also use to touch surfaces like door knobs or light switches. Should I use the elbow for those instead?

Your clothing will contain infectious virus that can be passed on for up to a week or more. This virus is spread in large droplets by coughing and sneezing. This means that the air will not infect you! BUT all the surfaces where these droplets land are infectious for about a week on average - everything that is associated with infected people will be contaminated and potentially infectious. The virus is on surfaces and you will not be infected unless your unprotected face is directly coughed or sneezed upon. This virus only has cell receptors for lung cells (it only infects your lungs) The only way for the virus to infect you is through your nose or mouth via your hands or an infected cough or sneeze onto or into your nose or mouth. James Robb, MD FCAP

A question (using the comment feature because I do not yet know what "ask related question" actually does): Is it advisable to use reusable (rather than disposable) filter masks, if available? (They are obviously much more expensive, but they also have much higher availability right now in many cases; and people who attend Burning Man, or have hobbies involving noxious fumes, may already have them.)

If so, what are the right precautions to take? Obviously throwing away a disposable mask eliminates all possibility that it will later create a contamination ha

... (read more)
My plan is to use a reusable p100 mask, with copper tape on the structural components, hopefully forming a barrier between the external filters/valves and the internal surfaces, and then to wash my hands before / after wearing it. No idea whether this will be any good, but it seemed more workable / less potentially blameworthy than acquiring disposable masks in a shortage.

Learn to wash you hands well - then do so several times a day, and use alcohol based hand sanitizer in-between.

Here's a video explaining how to do it: https://www.youtube.com/watch?v=eZw4Ga3jg3E&feature=youtu.be&t=64

Note: In order for this to work well, keep your nails short, and don't wear rings.

Related question: at what point should university students begin partial-quarantine measures such as not going to large classes and not going to cafeterias?

I'm concerned about the cafeteria things especially, because it seems like a pretty potent vector for transmission and also relatively avoidable by just buying/preparing your own food. At the minimum, I suspect that doing things like bringing your own utensils/plates that you've disinfected to be a reasonable precaution, although all the food is sort of sitting out so I'm not sure if that's even a thing

... (read more)
0Adam Zerner3y
With a little research I think you can probably save money by avoiding the cafeteria. Budget Bytes [https://www.budgetbytes.com/] has a lot of meal ideas for a few dollars a meal that can be cooking in advance and in bulk. Both cafeterias and classrooms seem like places that'd have some of the highest risks of infections, due to being in close proximity to others but moreso because you're touching surfaces that others have touched. It seems like a good idea to me to avoid cafeterias because it wouldn't be too difficult to find a different place to eat. Perhaps your car. Or perhaps at tables that aren't used as frequently as the cafeteria. But the downside of not going to class seems much larger. Depending on the class of course. Some big lectures that don't take attendance probably aren't worth going to in the first place, whereas smaller classes that do take attendance and don't use the textbook would be much harder to miss.
[-][anonymous]3y 4

While working at home while doing laboratory research is not doable, my hours are flexible and I am able to shift my workload between writing/theory work and wet-lab work. So, I am in the process of closing down several of my ongoing time-intensive wet-lab experiments, shifting my daytime to writing up existing research in my apartment, and moving my labwork to be more nocturnal when fewer people are around and I am not tempted by open eateries on the campus I work at. As one of the globetrotting academic class I am way fewer degrees of separation from so many places on Earth...

Similar things could be relevant to those fortunate enough to have flexible work arrangements.

[This comment is no longer endorsed by its author]Reply

[This should have been posted under answers. Mods, please move this if you can.]

Buy Chloroquine or Hydroxychloroquine: https://www.jstage.jst.go.jp/article/bst/advpub/0/advpub_2020.01047/_article

Reputable online pharmacies:

(I used the first one but the order

... (read more)

Hmm, Wikipedia tells me that Choloquine mildly suppresses the immune system, and also that it has a low theraputic index -- that is, the ratio between an effective dose and an overdose is relatively small -- and that it is "very dangerous in overdose". This does not sound like a drug that is necessarily very safe to self-administer, or recommend to people to do that, without substantial research.

EDIT: Additionally, the article you link has very little information in it. It lists a bunch of clinical trials but I can't figure out whether it's possible for me to see the results. It's not an academic paper in any real sense, just some kind of summary of other results. The only citation for the "multicenter clinical trials" given is to a press briefing by the Chinese government. There is one relevant citation to an article in Nature, but it is short and contains limited information, and is listed as a "Letter to the Editor" presumably meaning it's a preliminary result not subject to peer review.

None of this inherently means the science isn't good, but I think the risks of suggesting that people consider self-medicating with an apparently-dangerous drug are not justified by the flimsy evidence so far available.

Sorry, I wrote that in a hurry and didn't have time to report all of my reasoning. According to Wikipedia:

Hydroxychloroquine was approved for medical use in the United States in 1955.[1] It is on the World Health Organization's List of Essential Medicines, the safest and most effective medicines needed in a health system.

Yes the therapeutic index is low and I'm not a doctor but I don't think that mean it's easy to overdose if you follow direction. Otherwise it wouldn't be a very widely prescribed drug (in parts of the world where malaria is common). I haven't seen any reports or warnings of people overdosing after following recommended dosages (ETA: except after taking it for years). I only found accidents or suicides.

And you're right the paper is not a normal academic paper, but that is understandable given the fast moving circumstances. I do think it's pretty strong Bayesian evidence that Chloroquine and Hydroxychloroquine do more good than harm. Suppressing the immune system may be part of how it works (i.e., the immune system can do a lot of damage to one's lungs in the course of fighting infection).

Thanks for the additional info. (I think this could well be a good idea, but I think it's also good for people to know they need to be a big careful about it. E.g., to what extent do people self-prescribing chloroquine have access to good directions to follow, on how to dose it?)

Why is this a useful thing to do?

The idea is that if the virus infects 40-70% of all people, the health care system will run out of resources to treat everyone, so one may be forced to stay home and self-medicate. You can also take it when you first start to get mild COVID-19 symptoms to help prevent it from getting worse, potentially saving you from a trip to the hospital even if beds are still available. As the first link says, China has been doing clinical trials with Chloroquine and the preliminary results seem promising.
note: I think it's good to update the OP answers with a summary of reasoning and whatnot so that the abridged version of the Answer section is easier to skim (and easier to evaluate how well the karma system is floating good ideas to the top)
(note: I've moved this to the comments section for now, but would move it back if the OP was edited to have a good summary of the reasoning)
This advice may be individually rational but seems generally quite bad from a social point of view. Don't stockpile a medicine because you think the public health system will run out of it. Same goes for stockpiling a large number of surgical masks. I've heard that hospitals and institutions in Italy already fear running out of them, and masks are crucial in these places. The case might be different for people with high age or a preexisting condition that puts them in danger.
How did you order this without a prescription? When I went to order from the second link it asked for a prescription which I don't have.
I used the first pharmacy, which didn't require a prescription. The FAQ on the second one says they can write most prescriptions themselves, so try contacting them and asking them to do that. If that doesn't work, try ask your health provider to write a prescription? Or sign up at the first pharmacy to be notified when Hydroxychloroquine comes back into stock. I waited about a week for it myself. After receiving the notification, stock went out again in 2 hours so look out for it.

Hi! I'm from China-yes, exactly the place where COVID-19 was born and ruined our Spring Festival completely. After months-long battle with the virus, now the confirmed case of COVID-19 has down to an alltime low. But it saddens me to see that this virus seem to spread across other countries,South Korea,Japan,Iran,Italy etc. Here I'd like to share with you some advice that Chinese goverment used to prevent the virus from infecting more people.

1.Intially, the government advised people to stay at home. But soon,the advice escalated to ne... (read more)

What makes you think this advice is good, or have the sources provided their own justification? This thread is specifically for justified advice, not high-prestige advice.

The WHO thinks China has been doing a fantastic job containing COVID-19: https://www.reddit.com/r/China_Flu/comments/fbt49e/the_who_sent_25_international_experts_to_china/ [https://www.reddit.com/r/China_Flu/comments/fbt49e/the_who_sent_25_international_experts_to_china/] "China’s bold approach to contain the rapid spread of this new respiratory pathogen has changed the course of a rapidly escalating and deadly epidemic."
Ok, masks are the thing I am looking for advice for in the US. I do not know where to get them -- I checked Amazon and they're sold out, and my local drugstore doesn't seem to stock them at all (or are also sold out). Various advice online suggests that only n95 masks will be effective. Is that true? Talk to me more about the masks.
3Ŀady Jade Beacham3y
I read a paper which said no significant difference between surgical mask and N95 mask for protecting healthcare workers from influenza. Edit: Here's the paper! [https://jamanetwork.com/journals/jama/article-abstract/2749214]
If N95 masks work, O95-100 and P95-100 masks should also work, and potentially be more effective - the stuff they filter is a superset of what N95 filters. They're normally more expensive, but in the current state I've actually found P100s cheaper than N95s.
Side note; I would say that the discussion conventions of LessWrong discourage copious use of emphasis with things like bold, underline or all caps. The idea is that writers should strive to convince people with their words, and not with their formatting.
Formatting can be good for making distinctions or highlighting something. The overlap is, when the point that is being discussed, is whether two things are distinct/important or not.

I think everyone should be stocking up on at least a month of food because survival-grade food is cheap and has at least a10% chance of being very useful to you at some point, either in this pandemic or for a different emergency.

As this answer mentions, copper tape kills diseases. And most of the spread seems to come from hand-to-surface-to-face. With those thoughts, I'm wondering if there is some sort of glove you could wear that makes spread less likely.

Gloves remind you to not touch your face. Gloves act as a barrier, but also as a collector. For example, if you were nursing a sick person, you would wear nitrile or latex gloves while you were in the room with them. You would remove the gloves by turning inside out from wrist (not contacting fingertips or palms) and put gloves in trash as you leave the room. If you had gloves that you wore outside the house, you would remove the gloves before entering house. I personally don't like single use plastic disposable gloves, but there are PU or vinyl coated reusable (washable) gloves.

(Meta: unsure if it's ok to post an on-topic RFC here. Apologies in advance)

Should I sign up for cryonics ASAP?

Background: 23 y/o male in NYC. No known pre-existing health conditions. Mild -> moderate interest in cryonics; in a world without ncov, etc. would probably have a 30-60% chance of signing up.

4Ben Pace3y
Yeah, I'd ask you to make this a related question rather than an answer, it's not the right type for this thread. I'll move this to a comment and I recommend you go back up to the answer box and hit 'ask a related question'.

Should I expect a faster infection rate on my country (Brazil) because most people here use paper money to make trades? Should I recommend people to stop using paper money and instead opt for a contactless card? Most people don't have access to banking services; so is there any option for them?

Advice: when prepared food contamination risk becomes high, order in food that can be heated and microwave it thoroughly before eating

What kind of heat is necessary to get what safety boost?
The closest thing I can immediately find is this page which contains guidance on how to use heat to kill Ebola (which is another enveloped virus, but not in a closely related family.) https://www.cdc.gov/vhf/ebola/clinicians/cleaning/ebola-virus-survivability.html [https://www.cdc.gov/vhf/ebola/clinicians/cleaning/ebola-virus-survivability.html] It suggests that such a thing is reasonably plausible, at least, at the sorts of temperatures one might reasonably heat food to (but I think it would be very challenging to do so consistently using only a microwave oven.)
The official guideline is 60C for 30 minutes. https://www.hindawi.com/journals/av/2011/734690/ [https://www.hindawi.com/journals/av/2011/734690/] claims 56C for 15 minutes is enough. Personally, for homogenous wet stuff I would heat until close to boiling/fizzing, then wait 5 minutes and feel safe consuming.