CEV-inspired models

by Stuart_Armstrong1 min read7th Dec 201143 comments


Coherent Extrapolated Volition
Personal Blog

I've been involved in a recent thread where discussion of coherent extrapolated volition came up. The general consensus was that CEV might - or might not - do certain things, probably, maybe, in certain situations, while ruling other things out, possibly, and that certain scenarios may or may not be the same in CEV, or it might be the other way round, it was too soon to tell.

Ok, that's an exaggeration. But any discussion of CEV is severely hampered by our lack of explicit models. Even bad, obviously incomplete models would be good, as long as we can get useful information as to what they would predict. Bad models can be improved; undefined models are intuition pumps for whatever people feel about them - I dislike CEV, and can construct a sequence of steps that takes my personal CEV to wanting the death of the universe, but that is no more credible than someone claiming that CEV will solve all problems and make lots of cute puppies.

So I'd like to ask for suggestions of models that formalise CEV to at least some extent. Then we can start improving them, and start making CEV concrete.

To start it off, here's my (simplistic) suggestion:


Use revealed preferences as the first ingredient for individual preferences. To generalise, use hypothetical revealed preferences: the AI calculates what the person would decide in these particular situations.


Whenever revealed preferences are non-transitive or non-independent, use the person's stated meta-preferences to remove the issue. The AI thus calculates what the person would say if asked to resolve the transitivity or independence (for people who don't know about the importance of resolving them, the AI would present them with a set of transitive and independent preferences, derived from their revealed preferences, and have them choose among them). Then (wave your hands wildly and pretend you've never heard of non-standard realslexicographical preferences, refusal to choose and related issues) everyone's preferences are now expressible as utility functions.


Normalise each existing person's utility function and add them together to get your CEV. At the FHI we're looking for sensible ways of normalising, but one cheap and easy method (with surprisingly good properties) is to take the maximal possible expected utility (the expected utility that person would get if the AI did exactly what they wanted) as 1, and the minimal possible expected utility (if the AI was to work completely against them) as 0.