Godel's Completeness and Incompleteness Theorems

38Qiaochu_Yuan

11wuncidunci

6bryjnar

3roystgnr

5Qiaochu_Yuan

-5SilasBarta

1Qiaochu_Yuan

-7SilasBarta

2Qiaochu_Yuan

-8SilasBarta

4Qiaochu_Yuan

0SilasBarta

0Qiaochu_Yuan

0SilasBarta

0Qiaochu_Yuan

-2SilasBarta

0nshepperd

0SilasBarta

24Anatoly_Vorobey

2Eliezer Yudkowsky

16Anatoly_Vorobey

0Eliezer Yudkowsky

0cousin_it

9Johnicholas

9AlexMennen

1Eliezer Yudkowsky

7[anonymous]

7Qiaochu_Yuan

6wuncidunci

1[anonymous]

4Johnicholas

1[anonymous]

0[anonymous]

3[anonymous]

6Ezekiel

16Eliezer Yudkowsky

6Decius

6DanArmak

-1Decius

5DanArmak

3Decius

3DanArmak

0Decius

0DanArmak

0A1987dM

0Jabberslythe

0Decius

1DanArmak

0Decius

1DanArmak

-1Decius

4DanArmak

0Decius

0fubarobfusco

0Decius

3bryjnar

5incariol

11Qiaochu_Yuan

9FeepingCreature

2Vladimir_Nesov

8Kindly

5moshez

5bryjnar

9A1987dM

0bryjnar

2A1987dM

0bryjnar

5AlexMennen

1bryjnar

3Eliezer Yudkowsky

0bryjnar

3moshez

0bryjnar

0moshez

0bryjnar

4Vladimir_Nesov

4benelliott

7Bakkot

1benelliott

4MrMind

3bryjnar

1Ronny Fernandez

0Liron

0Alicorn

-1CronoDAS

5fubarobfusco

-9albtross

New Comment

Some comments are truncated due to high volume. (⌘F to expand all)

Mathematical comment that might amuse LWers: the compactness theorem is equivalent to the ultrafilter lemma, which in turn is essentially equivalent to the statement that Arrow's impossibility theorem is false if the number of voters is allowed to be infinite. More precisely, non-principal ultrafilters are the same as methods for determining elections based on votes from infinitely many voters in a way that satisfies all of the conditions in Arrow's theorem.

Mathematical comment that some LWers might find relevant: the compactness theorem is independent of ZF, which roughly speaking one should take as meaning that it is not possible to write down a non-principal ultrafilter explicitly. If you're sufficiently ultrafinitist, you might not trust a line of reasoning that involved the compactness theorem but purported to be related to a practical real-world problem (e.g. FAI).

The reason why compactness is not provable from ZF is that you need choice for some kinds of infinite sets. You don't need choice for countable sets (if you have a way of mapping them into the integers that is). You can get a proof of compactness for any countable set of axioms by proving completeness for any countable set of axioms, which can be done by construction of a model as in Johnstone's Notes on Logic and Set Theory p. 25.

6

Well, I can confirm that I think that that's super cool!
As wuncidunci says, that's only true if you allow uncountable languages. I can't think of many cases off the top of my head where you would really want that... countable is usually enough.
Also: more evidence that the higher model theory of first-order logic is highly dependent on set theory!

3

I'm fascinated by but completely failing to grasp your first comment. Specifically:
Suppose we:
* Take a finite set FS of N voters
* Define an infinite set IS of hypothetical voters, fully indexed by the positive integers, such that hypothetical vote n+1 is the same as real vote (n mod N)+1
* Use a "non-principal ultrafilter" to resolve the result
Which of Arrow's criteria is violated when considering this to be a result of the votes in FS but not violated when considering this to be a result of the votes in IS?

5

Good question! It's dictatorship. In such a situation, any non-principal ultrafilter picks out one of the congruence classes and only listens to that one.
More generally, given any partition of an infinite set of voters into a finite disjoint union of sets, a non-principal ultrafilter picks out one member of the partition and only listens to that one. In other words, a non-principal ultrafilter disenfranchises arbitrarily large portions of the population. This is another reason it's not very useful for actually conducting elections!

-5

If you could say that, you could rule out numbers with infinite numbers of predecessors, meaning that you could rule out all infinite-in-both-directions chains, and hence rule out all nonstandard numbers. And then the only remaining model would be the standard numbers. And then Godel's Statement would be a semantic implication of those axioms; there would exist no number encoding a proof of Godel's Statement in any model which obeyed the axioms of first-order arithmetic. And then, by Godel's Completeness Theorem, we could prove Godel's Statement from those axioms using first-order syntax. Because every genuinely valid implication of any collection of first-order axioms - every first-order statement that actually does follow, in every possible model where the premises are true - can always be proven, from those axioms, in first-order logic. Thus, by the combination of Godel's Incompleteness Theorem and Godel's Completeness Theorem, we see that there's no way to uniquely pin down the natural numbers using first-order logic. QED."

This is a tortured and unfortunate phrasing of the following direct and clearer argument:

Godel's Incompleteness Theorem says that there's a sentence ...

2

I realized after reading this that I'd stated the Compactness Theorem much more strongly than I needed, and that I only needed the fact that infinite semantic inconsistency implies finite semantic inconsistency, never mind syntactic proofs of inconsistency, so I did a quick rewrite accordingly. Hopefully this addresses your worries about "muddled description", although initially I was confused about what you meant by "muddled" since I'd always carefully distinguished semantics from syntax at each point in the post.
I was also confused by what you meant by "nonstandard models resulting from the Compactness Theorem" versus "nonstandard models resulting from the Incompleteness Theorem" - the nonstandard models are just there, after all, they don't poof into existence as a result of one Theorem or the other being proved. But yes, the Compactness Theorem shows that even adjoining all first-order stateable truths about the natural numbers to PA (resulting in a theory not describable within PA) would still give a theory with nonstandard models.

I think "semantic consistency" is not a very good phrase, and you should consider replacing it with "satisfiability" or, if that seems too technical, "realizability". The word "inconsistent" tells us that there's some sort of contradiction hidden within. But there *could* be statements without contradiction that are yet not realizable - not in our logic, thanks to the Completeness theorem, but in some other, perhaps less useful one. Imagine for example that you tried to develop mathematical logic from scratch, and defined "models" in such a way that only finite sets can serve as their domains (perhaps because you're a hardcore finitist or something). Then your class of models is too poor and doesn't sustain the Completeness theorem. There are consistent finite sets of statements, from which no contradiction may be syntactically derived, that are only realizable in infinite models and so are not realizable at all in this hypothetical logic. It feels wrong to call them "semantically inconsistent" even though you can technically do that of course, it's just a definition. "Realizable" seems better.

I feel that this exam...

0

I'll try a couple more edits, but keep in mind that this isn't aimed at logicians concerned about Hilbert's program, it's aimed at improving gibberish-detection skills (sentences that can't mean things) and avoiding logic abuse (trying to get empirical facts from first principles) and improving people's metaethics and so on.

0[anonymous]

Just as an aside, I really enjoyed Scott Aaronson's explanation of nonstandard models in this writeup:

I'm concerned that you're pushing second order logic too hard, using a false fork - such and so cannot be done in first order logic therefore second-order logic. "Second order" logic is a particular thing - for example it is a logic based on model theory. http://en.wikipedia.org/wiki/Second-order_logic#History_and_disputed_value

There are lots of alternative directions to go when you go beyond the general consensus of first-order logic. Freek Wiedijk's paper "Is ZF a hack?" is a great tour of alternative foundations of mathematics - firs...

you could use the 2 prefix for NOT and the 3 prefix for AND

Immediately after this, you use 1 for NOT and 2 for AND.

1

Fixed.

Something I've been wondering for a while now: if concepts like "natural number" and "set" can't be adequately pinned down using first-order logic, how the heck do *we* know what those words mean? Take "natural number" as a given. The phrase "set of natural numbers" seems perfectly meaningful, and I feel like I can clearly imagine its meaning, but I can't see how to *define* it.

The best approach that comes to my mind: for all *n*, it's easy enough to define the concept "set of natural numbers less than *n*", so you...

7

I don't think "set" has a fixed meaning in modern mathematics. At least one prominent set theorist talks about the set-theoretic multiverse, which roughly speaking means that instead of choosing particular truth values of various statements about sets such as the continuum hypothesis, set theorists study all possible set theories given by all possible (consistent) assignments of truth values to various statements about sets, and look at relationships between these set theories.
In practice, it's not actually a big deal that "set" doesn't have a fixed meaning. Most of what we need out of the notion of "set" is the ability to perform certain operations, e.g. take power sets, that have certain properties. In other words, we need a certain set of axioms, e.g. the ZF axioms, to hold. Whether or not those axioms have a unique model is less important than whether or not they're consistent (that is, have at least one model).
There are also some mathematicians (strict finitists) who reject the existence of the "set of natural numbers"...

6

The standard approach in foundations of mathematics is to consider a special first order theory called ZFC, it describes sets, whose elements are themselves sets. Inside this theory you can encode all other mathematics using sets for example by the Von Neumann construction of ordinals. Then you can restrict yourself to the finite ordinals and verify the Peano axioms, including the principle of induction which you can now formulate using sets. So everything turns out to be unique and pinned down inside your set theory.
What about pinning down your set theory? Well most mathematicians don't worry about set theory. The set theorists seem to be quite fine with it not being pinned down, but are sometimes need to be careful about inside which model they are working. A very useful consequence of set theory not being pinned down is a construction called forcing, which allows you to prove the independence of ZFC from the continuum hypothesis (there not being a set of reals which can't be bijected into neither the naturals nor the reals). What you do in this construction is that you work inside a model of set theory which is countable, which allows you to define a special kind of subset that does not exist in the original model but can be used to create a new model where certain properties fail to hold.
Some people want to use second order logic, talking about properties as primitive objects, to get this kind of pinpointing instead. The standard criticism to this is that you need to formalise what you mean by properties through axioms and rules of inference, giving you something quite similar to set theory. I'm not very familiar with second order logic so can't elaborate on the differences or similarities, but it does look like the next post in this sequence will be about it.

1[anonymous]

The thing about ZFC is that it doesn't feel like "the definition" of a set. It seems like the notion of a "set" or a "property" came first, and then we came up with ZFC as a way of approximating that notion. There are statements about sets that are independent of ZFC, and this seems more like a shortcoming of ZFC than a shortcoming of the very concept of a set; perhaps we could come up with a philosophical definition of the word "set" that pins the concept down precisely, even if it means resorting to subjective concepts like simplicity or usefulness.
On the other hand, the word "set" doesn't seem to be as well-defined as we would like it to be. I doubt that there is one unique concept that you could call "the set of all real numbers", since this concept behaves different ways in different set theories, and I see no basis on which to say one set theory or another is "incorrect".

4

Mathematics and logic are part of a strategy that I'll call "formalization". Informal speech leans on (human) biological capabilities. We communicate ideas, including ideas like "natural number" and "set" using informal speech, which does not depend on definitions. Informal speech is not quite pointing and grunting, but pointing and grunting is perhaps a useful cartoon of it. If I point and grunt to a dead leaf, that does not necessarily pin down any particular concept such as "dead leaves". It could just as well indicate the concept "things which are dry on top and wet on bottom" - including armpits. There's a Talmudic story about a debate that might be relevant here. Nevertheless (by shared biology) informal communication is possible.
In executing the strategy of formalization, we do some informal argumentation to justify and/or attach meaning to certain symbols and/or premises and/or rules. Then we do a chain of formal manipulations. Then we do some informal argumentation to interpret the result.
Model theory is a particular strategy of justifying and/or attaching meaning to things. It consists of discussing things called "models", possibly using counterfactuals or possible worlds as intuition boosters. Then it defines the meaning of some strings of symbols first by reference to particular models, and then "validity" by reference to all possible models, and argues that certain rules for manipulating (e.g. simplifying) strings of symbols are "validity-preserving".
Model theory is compelling, perhaps because it seems to offer "thicker" foundations. But you do not have to go through model theory in order to do the strategy of formalization. You can justify and/or attach meaning to your formal symbols and/or rules directly. A simple example is if you write down sequences of symbols, explain how to "pronounce" them, and then say "I take these axioms to be self-evident.".
One problem with model theory from my perspective is that it puts too much in the metatheory (

1[anonymous]

I guess I was confused about your question.
To me, it's all about reflective equilibrium. In our minds, we have this idea about what a "natural number" is. We care about this idea, and want to do something using it. However, when we realize that we can't describe it, perhaps we worry that we are just completely confused, and thinking of something that has no connection to reality, or maybe doesn't even make sense in theory.
However, it turns out that we do have a good idea of what the natural numbers are, in theory...a system described by the Peano axioms. These are given in second-order logic, but, like first-order logic, the semantics are built in to how we think about collections of things. If you can't pin down what you're talking about with axioms, it's a pretty clear sign that you're confused.
However, finding actual (syntactic) inference rules to deal with collections of things proved tricky. Many people's innate idea of how collections of things work come out to something like naive set theory. In 1901, Bertrand Russell found a flaw in the lens...Russell's paradox. So, to keep reflective equilibrium, mathematicians had to think of new ways of dealing with collections. And this project yielded the ZFC axioms. These can be translated into inference rules / axioms for second-order logic, and personally that's what I'd prefer to do (but I haven't had the time yet to formalize all of my own mathematical intuitions).
Now, as a consequence of Gödel's first incompleteness theorem (there are actually two, only the first is discussed in the original post), no system of second-order logic can prove all truths about arithmetic. Since we are able to pin down exactly one model of the natural numbers using second-order logic, that means that no computable set of valid inference rules for second-order logic is complete. So we pick out as many inference rules as we need for a certain problem, check with our intuition that they are valid, and press on.
If someone found a

0[anonymous]

Second-order logic.

3[anonymous]

Second-order logic does not provide a definition of the term "set".

So everyone in the human-superiority crowd gloating about how they're superior to mere machines and formal systems, because they can see that Godel's Statement is true just by their sacred and mysterious mathematical intuition... "...Is actually committing a horrendous logical fallacy [...] though there's a less stupid version of the same argument which invokes second-order logic."

So... not everyone. In *Godel, Escher, Bach*, Hofstadter presents the second-order explanation of Godel's Incompleteness Theorem, and then goes on to discuss the &quo...

The reason it's not random-strawman is that the human-superiority crowd claims we have a mystical ability to see implications that machines can't. If some of them, while making this claim, actually fail at basic logic, the irony is not irrelevant - it illustrates the point, "No, humans really *aren't* better at Godelian reasoning than machines would be."

6

Why is the mystical ability to see implications that machines can't mutually exclusive with the ability to fail at basic logic?

6

It's not logically exclusive. It's just that the only evidence for the existence of this ability comes from logical reasoning done by people. Which contains failures at basic logic.

-1

I didn't evaluate the strongest arguments for the human-superior crowd, because I find the question irrelevant. If some evidence comes from arguments which have not been shown to be flawed, then there is reason to believe that some humans are better at Godelian reasoning than machines can be.
The response wasn't "All of the evidence is logically flawed". The response was
(emphasis added)

5

I disagree with EY. I think all of them, while making this claim, fail at basic logic, although their failures come in several kinds.
This is based on arguments I have seen (all flawed) and my inability to come up myself with a non-flawed argument for that position. So if you think I am wrong, please point to evidence for human-only mystical powers, which is not logically flawed.

3

Suppose that humans had the ability to correctly intuit things in the presence of inadequate or misleading evidence. That ability would require that humans not follow first-order logic in drawing all of their conclusions. Therefore, if did not follow perfect logic it would be (very weak) evidence that they have superior ability to draw correct conclusions from inadequate or misleading evidence.
Humans do not always follow perfect logic.
I don't have good evidence, but I haven't searched the available space yet.

3

This is negligibly weak evidence, not even strong enough to raise the hypothesis to the level of conscious consideration. (Good evidence would be e.g. humans being actually observed to deduce things better than the evidence available to them would seem to allow.)
Consider that there are much much better reasons for humans not to follow logic perfectly. The stronger these are, the less evidence your approach generates, because the fact humans are not logical does not require additional explanation.
Logic is hard (and unlikely to be perfect when evolving an existing complex brain). Logic is expensive (in time taken to think, calories used, maybe brain size, etc.) Existing human adaptations interfere with logic (e.g. use of opinions as signalling; the difficulty of lying without coming to believe the lie; various biases). Existing human adaptations which are less good than perfect logic would be, but are good enough to make the development of perfect logic a bad value proposition. There are others.

0

Ever known someone to jump to the correct conclusion? Ever tried to determine how likely it is, given that someone is jumping to a conclusion with the available evidence, that the conclusion that they reach is correct?
Consider that several people have asserted, basically, that they have done the math, and more people than expected do better than expected at reaching correct conclusions with inadequate information. I haven't gathered empirical data, so I neither support nor refute their empirical claim about the world; do your empirical data agree, or disagree?

0

In my personal experience I can't think offhand of people who guessed a correct answer when a random guess, given available evidence, would have been very unlikely to be correct.
Sometimes people do guess correctly; far more often they guess wrong, and I expect the two to be balanced appropriately, but I haven't done studies to check this.
Can you please point me to these people who have done the math?

0

I played the Calibration Game for a while and I got right more than 60% of the questions to which I had guessed with “50%”. It kind-of freaked me out. (I put that down to having heard about one of the things in the question but not consciously remembering it, and subconsciously picking it, and since the bigger something is the more likely I am to have heard about it... or something like that.)

0

I have like 53% - 55% in the 50% category. 60% seems high. Since I have some knowledge of the questions I would expect to answer above above 50% correctly.

0

The human-superiorists make the claim that they have done the math; I haven't checked their work, because I find the question of whether humans can be better than a machine can be are irrelevant; the relevant fact is whether a given human us better than a given machine is, and the answer there is relatively easy to find and very hard to generalize.

1

So, can you point me to some specific claims made by these human-superiorists? I know of several, but not any that claim to back up their claims with data or evidence.

0

The best human Go players remain better than the best computer Go players. In a finite task which is exclusively solvable logic, humans are superior. Until recently, that was true of Chess as well.

1

There seems to be a misunderstanding here. We all know of lots of tasks where machines currently perform much worse than humans do (and vice versa). What I thought we were discussing was humans who could arrive at correct answers without apparently having sufficient information to do so, and research which failed to turned up explanations based on data available to these people.

-1

What would the methodology of such research look like? One could easily claim that poker players vary in skill and luck, or one could claim that poker players vary in their ability to make correct guesses about the state of the table based on the finite information available to them. How well do you think a perfect machine would do in a large poker tournament?

4

I don't know, you're the one who said you've seen people claiming they've done this research.
Machines are not nearly good enough yet at recognizing facial and verbal clues to do as well as humans in poker. And poker requires relatively little memorization and calculations, and humans do no worse than machines. So a machine (with a camera and microphone) would lose to the best human players right now.
OTOH, if a poker game is conducted over the network, and no information (like speech / video) is available of other players, just the moves they make, then I would expect a well written poker-playing machine to be better than almost all human players (who are vulnerable to biases) and no worse than the best human players.

0

A brief search indicates that the issue was unresolved five years ago.

0

The best computer player on KGS is currently ranked 6 dan, having risen from 1 dan since 2009. I'd expect the best programs to beat the best amateur players within the next five years, and professionals in 10–15.

0

That long? How long until you believe Go is solved?

3

I think it's worth addressing that kind of argument because it is fairly well known. Penrose, for example, makes a huge deal over it. Although mostly I think of Penrose as a case study in how being a great mathematician doesn't make you a great philosopher, he's still fairly visible.

Given these recent logic-related posts, I'm curious how others "visualize" this part of math, e.g. what do you "see" when you try to understand Goedel's incompleteness theorem?

(And don't tell me it's kittens all the way down.)

Things like derivatives or convex functions are really easy in this regard, but when someone starts talking about models, proofs and formal systems, my mental paintbrush starts doing some pretty weird stuff. In addition to ordinary imagery like bubbles of half-imagined objects, there is also something machine-like ...

You can think of the technical heart of the incompleteness theorem as being a fixed point theorem. You want to write down a sentence G that asserts "theory T does not prove G." In other words, there is a function which takes as input a sentence S and outputs the sentence "theory T does not prove S," and you want to find a fixed point of this function. There is a general fixed point theorem due to Lawvere which implies that this function does in fact have a fixed point. It is a more general version of what Wikipedia calls the diagonal lemma. Interestingly, it implies Cantor's theorem, and one way to prove it proceeds essentially by constructing a more general version of the Y combinator. Yanofsky's A Universal Approach to Self-Referential Paradoxes, Incompleteness and Fixed Points is a good reference.

I mention this for two reasons. First, there is a lot of visual machinery you can bring to bear on the general subject of fixed point theorems. For example, to visualize the Banach fixed point theorem you can think of a sequence of copies of the same shape nested in each other and shrinking towards a single point (the fixed point), and to visualize the Brouwer fixed...

9

Visual/imaginative modelling of mathematical tasks is not a universal trait.

2

However, it's a useful skill.

8

Thinking about algebra (e.g. group theory) makes a lot of this make more sense. The definition of a group is a "theory"; any particular group is a "model". This isn't a huge revelation or anything, but it's easier to think about these ideas in the context of algebra (where different structures that behave similarly are commonplace) rather than arithmetic (where we like thinking about one "true" picture).

5

Here's how I visualize Goedel's incompleteness theorem (I'm not sure how "visual" this is, but bear with me): I imagine the Goedel construction over the axioms of first-order Peano arithmetic. Clearly, in the standard model, the Goedel sentence is true, so we add G to the axioms. Now we construct G' a Goedel sentence in this new set, and add G'' as an axiom. We go on and on, G''', etc. Luckily that construction is computable, so we add G^w as a Goedel sentence in this new set. We continue on and on, until we reach the first uncomputable countable ordinal, at which point we stop, because we have an uncomputable axiom set. Note that Goedel is fine with that -- you can have a complete first-order Peano arithmetic (it would have non-standard models, but it would be complete!) -- as long as you are willing to live with the fact that you cannot know if something is a proof or not with a mere machine (and yes, Virginia, humans are also mere machines).

A few things.

a) I'm a little confused by the discussion of Cantor's argument. As I understand it, the argument is *valid* in first-order logic, it's just that the conclusion may have different semantics in different models. That is, the statement "the set X is uncountable" is cashed out *in terms of set theory*, and so if you have a non-standard model of set theory, then that statement may have non-standard sematics.

This is all made horrendously confusing by the fact that when we do model theory we tend to model our domains using sets. So even in a n...

9

More clearly -- "X is uncountable" means "there is no bijection between X and a subset of N", but "there" stilll means "within the given model".

0

Exactly (I'm assuming by subset you mean non-strict subset). Crucially, a non-standard model may not have all the bijections you'd expect it to, which is where EY comes at it from.

2

I was, but that's not necessary -- a countably infinite set can be bijectively mapped onto {2, 3, 4, ...} which is a proper subset of N after all! ;-)

0

Oh yeah - brain fail ;)

5

Disagree. I actually understand Godel's incompleteness theorem, and started out misunderstanding it until a discussion similar to the one presented in this post, so this may help clear up the incompleteness theorem for some people. And unlike the Compactness theorem, Godel's completeness theorem at least seems fairly intuitive. Proving the existence of nonstandard models from the Compactness theorem seems kind of like pulling a rabbit out of a hat if you can't show me why the Compactness theorem is true.
Do you have any basis for this claim?

1

I absolutely agree that this will help people stop being confused about Godel's theorem, I just don't know why EY does it in this particular post.
Nope, it's pure polemic ;) Intuitively I feel like it's a realism/instrumentalism issue: claiming that the only things which are true are provable feels like collapsing the true and the knowable. In this case the decision is about which tool to use, but using a tool like first-order logic that has these weird properties seems suspicious.

3

Isn't the knowable limited to what can be known with finite chains of reasoning, whatever your base logic?

0

Sure. So you're not going to be able to prove (and hence know) some true statements. You might be able to do some meta-reasoning about your logic to figure some of these out, although quite how that's supposed to work without requiring the context of set theory again, I'm not really sure.

3

bryjnar: I think the point is that the metalogical analysis that happens in the context of set theory is still a finite syntactical proof. In essense, all mathematics can be reduced to finite syntactical proofs inside of ZFC. Anything that really, truly, requires infinite proof in actual math is unknowable to everyone, supersmart AI included.

0

Absolutely, but it's one that happens in a different system. That can be relevant. And I quite agree: that still leaves some things that are unknowable even by supersmart AI. Is that surprising? Were you expecting an AI to be able to know everything (even in principle)?

0

No, it is not surprising... I'm just saying that saying that the semantics is impoverished if you only use finite syntactical proof, but not to any degree that can be fixed by just being really really really smart.

0

By semantics I mean your notion of what's true. All I'm saying is that if you think that you can prove everything that's true, you probably have a an overly weak notion of truth. This isn't necessarily a problem that needs to be "fixed" by being really smart.
Also, I'm not saying that our notion of proof is too weak! Looking back I can see how you might have got the impression that I thought we ought to switch to a system that allows infinite proofs, but I don't. For one thing, it wouldn't be much use, and secondly I'm not even sure if there even is such a proof system for SOL that is complete.

My impression (which might be partially a result of not understanding second order logic well enough) is that logical pinpointing is hopeless in at least two senses: (1) it's not possible to syntactically represent sufficiently complicated structures (such as arithmetic and particular set theoretic universes) in some ways, and (2) trying to capture particular structures that are intuitively or otherwise identified by humans is like conceptual analysis of wrong questions, the intuitions typically don't identify a unique idea, and working on figuring out whi...

Nitpick, the Lowenheim-Skolem Theorems arre not *quite* that general. If we allow languages with uncountably many symbols and sets of uncountably many axioms then we can lower bound the cardinality (by bringing in uncountably many constants and for each pair adding the axiom that they are not equal). The technically correct claim would be that any set of axioms either have a finite upper bound on their models, or have models of every infinite cardinality at least as large as the alphabet in which they are expressed.

But at least it's (the Compactness Theorem) simpler than the Completeness Theorem

It is!? Does anyone know a proof of Compactness that doesn't use completeness as a lemma?

7

There's actually a direct one on ProofWiki. It's constructive, even, sort of. (Roughly: take the ultraproduct of all the models of the finite subsets with a suitable choice of ultrafilter.) If you've worked with ultraproducts at all, and maybe if you haven't, this proof is pretty intuitive.
As Qiaochu_Yuan points out, this is equivalent to the ultrafilter lemma, which is independent of ZF but strictly weaker than the Axiom of Choice. So, maybe it's not that intuitive.

1

That's really beautiful, thanks.

4

Yes: instead of proving "A theory that has no model has a finite proof of a contradiction" you prove the equivalent converse "If every finite subset of a theory has a model, then the theory has a model" (which is why the theorem is named after compactness at all) by constructing a chain of model and showing that the limit of the chain has a model. Also the original proof of Goedel used Compactness to prove Completeness.

3

Yes. Or, at least, I did once! That's the way we proved it the logic course I did. The proof is a lot harder. But considering that the implication from Completeness is pretty trivial, that's not saying much.

Wait... this will seems stupid, but can't I just say: "there does not exist x where sx = 0"

nevermind

[This comment is no longer endorsed by its author]

"Ah, well... some people believe there is no spoon. But let's take that up next time."

Congratulations, you have just written a shaggy dog story. :P

5

Naah ... in a shaggy-dog story, the setup for the pun begins at the beginning of the story. This is just an essay with a pun at the end.

Followup to: Standard and Nonstandard NumbersSo... last time you claimed that using first-order axioms to rule out the existence of nonstandard numbers - other chains of numbers besides the 'standard' numbers starting at 0 - was

forever and truly impossible, even unto a superintelligence, no matterhowclever the first-order logic used, even if you came up with an entirely different way of axiomatizing the numbers."Right."

How could you, in your finiteness, possibly know that?

"Have you heard of Godel's Incompleteness Theorem?"

Of course! Godel's Theorem says that for every consistent mathematical system, there are statements which are

truewithin that system, which can't beprovenwithin the system itself. Godel came up with a way to encode theorems and proofs as numbers, and wrote a purely numerical formula to detect whether a proof obeyed proper logical syntax. The basic trick was to use prime factorization to encode lists; for example, the ordered list <3, 7, 1, 4> could be uniquely encoded as:2

^{3}* 3^{7}* 5^{1}* 7^{4}And since prime factorizations are unique, and prime powers don't mix, you could inspect this single number, 210,039,480, and get the unique ordered list <3, 7, 1, 4> back out. From there, going to an encoding for logical formulas was easy; for example, you could use the 2 prefix for NOT and the 3 prefix for AND and get, for any formulas Φ and Ψ encoded by the numbers #Φ and #Ψ:

¬Φ = 2

^{2}* 3^{#Φ}Φ ∧ Ψ = 2

^{3}* 3^{#Φ}* 5^{#Ψ}It was then possible, by dint of crazy amounts of work, for Godel to come up with a gigantic formula of Peano Arithmetic [](p, c) meaning, 'P encodes a valid logical proof using first-order Peano axioms of C', from which directly followed the formula []c, meaning, 'There exists a number P such that P encodes a proof of C' or just 'C is provable in Peano arithmetic.'

Godel then put in some

furtherclever work to invent statements which referred tothemselves, by having them contain sub-recipes that would reproduce the entire statement when manipulated by another formula.And then Godel's Statement encodes the statement, 'There does not exist any number P such that P encodes a proof of (this statement) in Peano arithmetic' or in simpler terms 'I am not provable in Peano arithmetic'. If we assume first-order arithmetic is consistent and sound, then no

proofof this statementwithinfirst-order arithmetic exists, which means the statement istruebut can't be proven within the system. That's Godel's Theorem."Er... no."

No?

"No. I've heard rumors that Godel's Incompleteness Theorem is horribly misunderstood in your Everett branch. Have you heard of Godel's

CompletenessTheorem?"Is that a thing?

"Yes! Godel's Completeness Theorem says that, for any collection of first-order statements,

every semantic implication of those statements is syntactically provable within first-order logic. If something is a genuine implication of a collection of first-order statements - if it actuallydoesfollow, in the models pinned down by those statements - then you canproveit,withinfirst-order logic, usingonlythe syntactical rules of proof, from those axioms."I don't see how that could possibly be true at the same time as Godel's Incompleteness Theorem. The Completeness Theorem and Incompleteness Theorem seem to say diametrically opposite things. Godel's Statement is implied by the axioms of first-order arithmetic - that is, we can see it's true using our own mathematical reasoning -

"Wrong."

What? I mean, I understand we can't prove it

withinPeano arithmetic, but from outside the system we can see that -All right, explain.

"Basically, you just committed the equivalent of saying, 'If all kittens are little, and some little things are innocent, then some kittens are innocent.' There are universes - logical models - where it so happens that the premises are true and the conclusion also happens to be true:"

"But there are also valid models of the premises where the conclusion is false:"

"If you, yourself, happened to live in a universe like the first one - if, in your mind, you were

only thinkingabout a universe like that - then you mightmistakenlythink that you'd proven the conclusion. But your statement is notlogicallyvalid, the conclusion is not true ineveryuniverse where the premises are true. It's like saying, 'All apples are plants. All fruits are plants. Therefore all apples are fruits.' Both the premises and the conclusions happen to be true inthisuniverse, but it's not valid logic."Okay, so how does this invalidate my previous explanation of Godel's Theorem?

"Because of the non-standard models of first-order arithmetic. First-order arithmetic narrows things down a lot - it rules out 3-loops of nonstandard numbers, for example, and mandates that every model contain the number 17 - but it doesn't pin down a

singlemodel. There's still the possibility of infinite-in-both-directions chains coming after the 'standard' chain that starts with 0. Maybeyouhave just the standard numbers in mind, but that's not theonlypossible model of first-order arithmetic."So?

"So in some of those other models, there are nonstandard numbers which - according to Godel's

arithmeticalformula for encodes-a-proof - are 'nonstandard proofs' of Godel's Statement. I mean, they're not what we would callactualproofs. An actual proof would have a standard number corresponding to it. A nonstandard proof might look like... well, it's hard to envision, but it might be something like, 'Godel's statement is true, because not-not-Godel's statement, because not-not-not-not-Godel's statement', and so on goingbackward forever, every step of the proof being valid, because nonstandard numbers have an infinite number of predecessors."And there's no way to say, 'You can't have an infinite number of derivations in a proof'?

"Not in first-order logic. If you could say that, you could rule out numbers with infinite numbers of predecessors, meaning that you could rule out all infinite-in-both-directions chains, and hence rule out all nonstandard numbers. And then the only

remainingmodel would be the standard numbers. And then Godel's Statement would be asemanticimplication of those axioms; there would existnonumber encoding a proof of Godel's Statement inanymodel which obeyed the axioms of first-order arithmetic. And then, by Godel'sCompletenessTheorem, we could prove Godel's Statement from those axioms using first-order syntax. Because everygenuinelyvalid implication of any collection of first-order axioms - every first-order statement thatactually does follow, in every possible model where the premises are true- canalwaysbe proven, from those axioms, in first-order logic. Thus, by thecombinationof Godel's Incompleteness Theorem and Godel's Completeness Theorem, we see that there's no way to uniquely pin down the natural numbers using first-order logic. QED."Whoa. So everyone in the human-superiority crowd gloating about how

they'resuperior to mere machines and formal systems, becausetheycan see that Godel's Statement is true just by their sacred and mysterious mathematical intuition..."...Is actually committing a horrendous logical fallacy of the sort that no cleanly designed AI could ever be tricked into, yes. Godel's Statement doesn't

actually followfrom the first-order axiomatization of Peano arithmetic! There are models where all the first-order axioms are true, and yet Godel's Statement is false! The standard misunderstanding of Godel's Statementissomething like the situation as it obtains insecond-order logic, where there's no equivalent of Godel's Completeness Theorem. But people in the human-superiority crowd usually don't attach that disclaimer - they usually present arithmetic using the first-order version, when they're explaining what it is that they can see that a formal system can't. It's safe to say thatmostof them are inadvertently illustrating the irrational overconfidence of humans jumping to conclusions, even though there's a less stupid version of the same argument which invokes second-order logic."Nice. But still... that proof you've shown me seems like a rather

circuitousway of showing that you can't ever rule out infinite chains, especially since I don't see why Godel's Completeness Theorem should be true."Well... an equivalent way of stating Godel's Completeness Theorem is that every

syntacticallyconsistent set of first-order axioms - that is, every set of first-order axioms such that you cannotsyntacticallyprove a contradiction from them using first-order logic - has at least one semantic model. The proof proceeds by trying to adjoin statements saying P or ~P for every first-order formula P, at least one of which must be possible to adjoin while leaving the expanded theory syntactically consistent -"Hold on. Is there some more

constructiveway of seeing why a non-standard model has to exist?"Mm... you could invoke the Compactness Theorem for first-order logic. The Compactness Theorem says that

if a collection of first-order statements has no model, some finite subset of those statements is also semantically unrealizable. In other words, if a collection of first-order statements - even aninfinitecollection - is unrealizable in the sense that no possible mathematical model fits all of those premises, then there must besomefinite subset of premises which are also unrealizable. Or modus ponens to modus tollens, if all finite subsets of a collection of axioms have at least one model, then the whole infinite collection of axioms has at least one model."Ah, and can you explain why the Compactness Theorem should be true?

"No."

I see.

"But at least it's simpler than the Completeness Theorem, and from the Compactness Theorem, the inability of first-order arithmetic to pin down a standard model of numbers follows immediately. Suppose we take first-order arithmetic, and adjoin an axiom which says, 'There exists a number greater than 0.' Since there does in fact exist a number, 1, which is greater than 0, first-order arithmetic plus this new axiom should be semantically okay - it should have a model if any model of first-order arithmetic ever existed in the first place. Now let's adjoin a new constant symbol

cto the language, i.e.,cis a constant symbol referring to a single object across all statements where it appears, the way 0 is a constant symbol and an axiom then identifies 0 as the object which is not the successor of any object. Then we start adjoining axioms saying 'cis greater than X', where X is some concretely specified number like 0, 1, 17, 2^{256}, and so on. In fact, suppose we adjoin aninfiniteseries of such statements, one for every number:"Wait, so this new theory is saying that there exists a number

cwhich is larger than every number?"No, the infinite schema says that there exists a number

cwhich is larger than anystandardnumber."I see, so this new theory

forcesa nonstandard model of arithmetic."Right. It rules out

onlythe standard model. And the Compactness Theorem says this new theory is still semantically realizable - it hassomemodel, just not the standard one."Why?

"Because any finite subcollection of the new theory's axioms, can only use a finite number of the extra axioms. Suppose the largest extra axiom you used was '

cis larger than 2^{256}'. In the standard model, there certainly exists a number 2^{256}+1 with whichccould be consistently identified. So the standard numbers must be a model of that collection of axioms, and thus that finite subset of axioms must be semantically realizable. Thus by the Compactness Theorem, the full, infinite axiom system must also be semantically realizable; it must have at least one model. Now, adding axioms neverincreasesthe number of compatible models of an axiom system - each additional axiom can onlyfilter outmodels, notaddmodels which are incompatible with the other axioms. So this new model of the larger axiom system - containing a number which is greater than 0, greater than 1, and greater than every other 'standard' number - mustalsobe a model of first-order Peano arithmetic. That's a relatively simpler proof that first-order arithmetic - in fact,anyfirst-order axiomatization of arithmetic - has nonstandard models."Huh... I can't quite say that seems obvious, because the Compactness Theorem doesn't feel obvious; but at least it seems more specific than trying to prove it using Godel's Theorem.

"A similar construction to the one we used above - adding an infinite series of axioms saying that a thingy is even larger - shows that if a first-order theory has models of unboundedly large finite size, then it has at least one infinite model. To put it even more alarmingly, there's no way to characterize the property of

finitenessin first-order logic! You can have a first-order theory which characterizes models of cardinality 3 - just say that there exist x, y, and z which are not equal to each other, but with all objects being equal to x or y or z. But there's no first-order theory which characterizes the property offinitenessin the sense that all finite models fit the theory, and no infinite model fits the theory. A first-order theory either limits the size of models to some particular upper bound, or it has infinitely large models."So you can't even say, 'x is finite', without using second-order logic? Just forming the

conceptof infinity and distinguishing it from finiteness requires second-order logic?"Correct, for pretty much exactly the same reason you can't say 'x is only a finite number of successors away from 0'. You can say, 'x is less than a googolplex' in first-order logic, but not, in full generality, 'x is finite'. In fact there's an even

worsetheorem, the Lowenheim-Skolem theorem, which roughly says that if a first-order theory hasanyinfinite model, it has modelsof all possible infinite cardinalities.There are uncountable models of first-order Peano arithmetic. There are countable models of first-order real arithmetic - countable models of any attempt to axiomatize the real numbers in first-order logic. There are countable models of Zermelo-Frankel set theory."How could you

possiblyhave a countable model of the real numbers? Didn't Cantorprovethat the real numbers were uncountable? Wait, let me guess, Cantor implicitly used second-order logic somehow."It follows from the Lowenheim-Skolem theorem that he must've. Let's take Cantor's proof as showing that you can't map every set of integers onto a distinct integer - that is, the powerset of integers is larger than the set of integers. The Diagonal Argument is that if you show me a mapping like that, I can take the set which contains 0 if and only if 0 is not in the set mapped to the integer 0, contains 1 if and only if 1 is

notin the set mapped to the integer 1, and so on. That gives you a set of integers that no integer maps to."You know, when I was very young indeed, I thought I'd found a

counterexampleto Cantor's argument. Just take the base-2 integers - 1='1', 2='10', 3='11', 4='100', 5='101', and so on, and let each integer correspond to a set in the obvious way, keeping in mind that I was also young enough to think the integers started at 1:Clearly, every set of integers would map onto a unique integer this way.

"Heh."

Yeah, I thought I was going to be famous.

"How'd you realize you were wrong?"

After an embarrassingly long interval, it occurred to me to actually try

applyingCantor's Diagonal Argument to my own construction. Since 1 is in {1} and 2 is in {2}, they wouldn't be in the resulting set, but 3, 4, 5 and everything else would be. And of course my construct didn't have the set {3, 4, 5, ...} anywhere in it. I'd mapped all thefinitesets of integers onto integers, but none of the infinite sets."Indeed."

I was then tempted to

go onarguing that Cantor's Diagonal Argument was wronganyhowbecause it was wrong to have infinite sets of integers. Thankfully, despite my young age, I was self-aware enough to realize I was being tempted to become a mathematical crank - I had also read a book on mathematical cranks by this point - and so I just quietly gave up, which was a valuable life lesson."Indeed."

But how exactly does Cantor's Diagonal Argument depend on second-order logic? Is it something to do with nonstandard integers?

"Not exactly. What happens is that there's no way to make a first-order theory contain

allsubsets of an infinite set; there's no way to talk aboutthepowerset of the integers. Let's illustrate using a finite metaphor. Suppose you have the axiom "All kittens are innocent." One model of that axiom might contain five kittens, another model might contain six kittens.""In a second-order logic, you can talk about

allpossible collections of kittens - in fact, it's built into the syntax of the language when you quantify over all properties.""In a first-order set theory, there are

somesubsets of kittens whose existence is provable, but others might be missing.""Though that image is only metaphorical, since you

canprove the existence of all the finite subsets. Just imagine that's an infinite number of kittens we're talking about up there."And there's no way to say that

all possiblesubsets exist?"Not in first-order logic, just like there's no way to say that you want as few natural numbers as possible. Let's look at it from the standpoint of first-order set theory. The Axiom of Powerset says:"

Okay, so that says, for every set A, there exists a set P which is the

power setof all subsets of A, so that for every set B, B is inside the powerset Pif and only ifevery element of B is an element of A. Any set which contains only elements from A, will be inside the powerset of A. Right?"Almost. There's just one thing wrong in that explanation - the word 'all' when you say 'all subsets'. The Powerset Axiom says that for any collection of elements from A,

if a set B happens to existwhich embodies that collection, that set B is inside the powerset P of A. There's no way of saying, within a first-order logical theory, that a set exists forevery possiblecollection of A's elements. There may besomesub-collections of A whose existence you can prove. But other sub-collections of A will happen to exist as sets inside some models, but not exist in others."So in the same way that first-order Peano arithmetic suffers from mysterious extra numbers, first-order set theory suffers from mysterious missing subsets.

"Precisely. A first-order set theory might happen to be missing the particular infinite set corresponding to, oh, say, {3, 8, 17, 22, 28, ...} where the '...' is an infinite list of random numbers with no

compactway of specifying them. If there's a compact way of specifying a set - if there's a finite formula that describes it - you can often prove it exists. Butmostinfinite sets won't have any finite specification. It's precisely the claim to generalize overall possible collectionsthat characterizes second-order logic. So it's trivial to say in a second-order set theory thatallsubsets exist. You would just say that for any set A, for any possible predicate P, there exists a set B which contains x iff x in A and Px."I guess that torpedoes my clever idea about using first-order set theory to uniquely characterize the standard numbers by first asserting that there exists a set containing

at leastthe standard numbers, and then talking about thesmallest subsetwhich obeys the Peano axioms."Right. When you talk about the numbers using first-order set theory, if there are

extranumbers inside your set of numbers, the subset containingjustthe standard numbers must be missing from the powerset of that set. Otherwise you could find the smallest subset inside the powerset such that it contained 0 and contained the successor of every number it contained."Hm. So then what exactly goes wrong with Cantor's Diagonal Argument?

"Cantor's Diagonal Argument uses the idea of a mapping between integers and sets of integers. In set theory, each mapping would itself be a set - in fact there would be a set of all mapping sets:"

"There's no way to first-order assert the existence of

every possible mappingthatwecan imagine from outside. So a first-order version of the Diagonal Argument would show that in anyparticularmodel, for any mappingthat existed in the modelfrom integers to sets of integers, the model would also contain a diagonalized set of integers that wasn't in that mapping. This doesn't mean thatwecouldn't count all the sets of integers whichexistedin the model.The model could have so many 'missing' sets of integers that the remaining sets were denumerable. But then some mappings from integers to sets would also be missing, and in particular, the 'complete' mapping we can imagine from outside would be missing. And for every mapping thatwasin the model, the Diagonal Argument would construct a set of integers that wasn't in the mapping. On the outside,wewould see a possible mapping from integers to sets - but that mapping wouldn't existinsidethe model as a set. It takes a logic-of-collections to say thatall possibleinteger-collections exist as sets, or thatno possiblemapping exists from the integers onto those sets."So if first-order logic can't even talk about

finitenessvs.infiniteness- let alone prove that there arereallymore sets of integers than integers - then why is anyone interested in first-order logic in the first place? Isn't that like trying to eat dinner using only a fork, when there are lots of interesting foods whichprovablycan't be eaten with a fork, and you have a spoon?"Ah, well... some people believe there

isno spoon. But let's take that up next time."Part of the sequence

Highly Advanced Epistemology 101 for BeginnersNext post: "Second-Order Logic: The Controversy"

Previous post: "Standard and Nonstandard Numbers"