This offers food for thought about various anti-aging strategies. For example, given the superexponential growth in mortality, if we had a magic medical treatment that could cut your mortality risk in half but didn't affect the growth of said risk, then that would buy you very little late in life, but might extend life by decades if administered at a very young age.
This isn't an anti-aging strategy, but it is an anti-death strategy: low-dose aspirin. As explained in this New York Times article on December 6, 2010, "researchers examined the cancer death rates of 25,570 patients who had participated in eight different randomized controlled trials of aspirin that ended up to 20 years earlier".
Eight. Different. Randomized. Controlled. Trials. Twenty-five thousand people.
They found (read the article) that low-dose aspirin dramatically decreased the risk of death from solid tumor cancers. Again, this ("risk of death") is the gold standard - many studies measure outcomes indirectly (e.g. tumor size, cholesterol level, etc.) which leads to unpleasant surprises (X shrinks tumors but doesn't keep people alive, Y lowers cholesterol levels but doesn't keep people alive, ...
The meta-analysis you cite is moderately convincing, but only moderately. They had enough different analyses such that some would come out significant by pure chance. Aspirin was found to have an effect on 15-year-mortality significant only at the .05 level, and aspirin was found not to have a significant effect 20-year-mortality, so take it with a grain of salt. There was also some discussion in the literature about how it's meta-analyzing studies performed on people with cardiac risk factors but not bleed risk factors, and so the subjects may have been better candidates for aspirin than the general population.
The Wikipedia quote you give is referring to secondary prevention, which means "prevention of a disease happening again in someone who's already had the disease". Everyone agrees aspirin is useful for secondary prevention, but there are a lot of cases where something useful for secondary prevention isn't as good for primary. In primary prevention, aspirin doesn't get anywhere near a tenth reduction in mortality (although it does seem to have a lesser effect).
I would say right now there's enough evidence that people who enjoy self-experimentation are justified in trying low-dose aspirin and probably won't actively hurt themselves (assuming they check whether they're at special risk of bleeds first), but not enough evidence that doctors should be demonized for not telling everyone to do it.
And I think I have my answer:
Last week, researchers in London reported that they had analyzed nine randomized studies of aspirin use in the United States, Europe and Japan that included more than 100,000 participants. The study subjects had never had a heart attack or stroke; all regularly took aspirin or a placebo to determine whether aspirin benefits people who have no established heart disease.
In the combined analysis, the researchers found that regular aspirin users were 10 percent less likely than the others to have any type of heart event, and 20 percent less likely to have a nonfatal heart attack. While that sounds like good news, the study showed that the risks of regular aspirin outweighed the benefits.
Aspirin users were about 30 percent more likely to have a serious gastrointestinal bleeding event, a side effect of frequent aspirin use. The overall risk of dying during the study was the same among the aspirin users and the others. And though some previous studies suggested that regular aspirin use could prevent cancer, the new analysis showed no such benefit. Over all, for every 162 people who took aspirin, the drug prevented one nonfatal heart attack, but caused about two serious bleeding episodes.
http://well.blogs.nytimes.com/2012/01/16/daily-aspirin-is-not-for-everyone-study-suggests/
I didn't mean to imply that "you should do this now without telling your doctor". You should certainly tell your doctor about all the medications you're taking! I would even say that "ask your doctor immediately whether this is a good idea" is a reasonable approach(1), in contrast to the inexplicably indifferent tone of the article - although I'm sure the writer and editors have processed a zillion "observational study on a limited number of people for a limited amount of time indicates that X may have some influence on Y which ultimately leads to Z" articles, where the correct action in response really is to say "yes, that's nice, tell me when you know more".
The most significant caveat mentioned in the article was: "While Dr. Jacobs said the study design was valid, relatively few women were included in the trials, making it difficult to generalize the results to women." I'm male, so that one didn't apply to me. But look down a few paragraphs in the article: "who did an observational study several years ago reporting that women who had taken aspirin regularly had a lower risk of ovarian cancer". Even if I were female (it m...
There's a related problem that often isn't appreciated. In general, in the natural environment if the average lifespan is around L, evolution will have no problem creating all sorts of tricks to maximize what it gets out of organs but causes them to fail just around or sometime after L. That means, that if evolution can get an advantage by making things fail late in the process, it will. This is consistent with the Gompertz curve, and it also suggests that optimists like Aubrey de Grey may be massively underestimating the difficulty in extending lifespan. As we get a larger population of very elderly, we're likely to run into diseases and problems we've never even seen before. To reach actuarial escape velocity, we will likely need to anticipate such diseases, and effective treatments, before we even ever encounter the diseases. That requires a degree of understanding of the human body that is well beyond our current level.
..."Last month, a 114-year-old former schoolteacher from Georgia named Besse Cooper became the world's oldest living person. Her predecessor, Brazil's Maria Gomes Valentim, was 114 when she died. So was the oldest living person before her, and the one before her. In fact, eight of the last nine "world's oldest" titleholders were 114 when they achieved the distinction. Here's the morbid part: All but two were still 114 when they passed it on. Those two? They died at 115.
The celebration surrounding Cooper when she assumed the title, then, might as well have been accompanied by condolences. If historical trends hold, she will likely be dead within a year.
It's no surprise that it's hard to stay the "world's oldest" for very long. These people are, after all, really old. What's surprising is just how consistent the numbers have been. Just seven people whose ages could be fully verified by the Gerontology Research Group have ever made it past 115. Only two of those seven lived to see the 21st century. The longest-living person ever, a French woman named Jeanne Calment, died at age 122 in August 1997; no one since 2000 has come within five years of matching he
The literature I've seen - notably Finch, Senescence and the Genome - plot the Gompertz curve as a pure exponential that falls off at the end. It gives a really nice fit to the exponential almost up to the end. Then - sorry, this is the opposite of what is claimed in the post - it falls off! That is, if you live to be about 100, the chance of your dying stops increasing exponentially.
(As George Burns said, "The secret to living forever is to live to be 100. Very few people die after the age of 100.")
This suggests (doesn't prove, just suggests...
Scientists have already demonstrated interventions that significantly extend maximum lifespan in several species. I see no reason to believe humans will be different.
My guess is that the primary cause of human aging is a combination of "depleted" stem cells combined with a gradual disruption of regulatory homeostasis. Part of the problem with "depleted" stem cells is an accumulation of silencing errors in the stem cell DNA. Another part is a gradual breakdown in local cell signaling that regulates cell fate. I believe both problems coul...
This is wonderful.
Although it doesn't fit, for some reason this reminds me of Robin Hanson's cognitive tactic of collecting a set of stylized facts (this certainly seems like a useful one) about a field and then trying to come up with simple models which fit those stylized facts.
Perhaps what these have in common is that they both focus on eliminating lots of wrong models from a big pool rather than trying to choose the best model between a small pool (which is what most statistical techniques focus on).
Edit: I think their similarity has more to do with that they both use high level facts to eliminate and suggest classes of models.
This offers food for thought about various anti-aging strategies. For example, given the superexponential growth in mortality, if we had a magic medical treatment that could cut your mortality risk in half but didn't affect the growth of said risk, then that would buy you very little late in life, but might extend life by decades if administered at a very young age.
Wait, what? What do you mean by halving your risk and not halving your risk growth, since your risk is determined entirely by your risk growth? I'm hoping you don't mean capping the risk of d...
If it has no physiological effect except aging me at my subjective time (i.e. 16 years pass on the calendar, but I've been awake as much as most people are in 22 years, and my body is 22 years older rather than 16) then it doesn't matter whether I'm on it or not.
Incorrect, because you've only gotten the benefit of 16 years of medical advancement, rather than 22 years of medical advancement. This alone may overwhelm all other differences.
I recently recalled, apropos of the intermittent fasting/caloric restriction discussion, a very good blog post on mortality curves and models of aging:
gravityandlevity then discusses some simple models of aging and the statistical characters they have which do not match Gompertz's law:
What models do yield a Gompertz curve? gravityandlevity describes a simple 'cops and robbers' model (which I like to think of as 'antibodies and cancers'):
This offers food for thought about various anti-aging strategies. For example, given the superexponential growth in mortality, if we had a magic medical treatment that could cut your mortality risk in half but didn't affect the growth of said risk, then that would buy you very little late in life, but might extend life by decades if administered at a very young age.