Crossposted from the AI Optimists blog.

AI doom scenarios often suppose that future AIs will engage in scheming— planning to escape, gain power, and pursue ulterior motives, while deceiving us into thinking they are aligned with our interests. The worry is that if a schemer escapes, it may seek world domination to ensure humans do not interfere with its plans, whatever they may be.

In this essay, we debunk the counting argument— a central reason to think AIs might become schemers, according to a recent report by AI safety researcher Joe Carlsmith.[1] It’s premised on the idea that schemers can have “a wide variety of goals,” while the motivations of a non-schemer must be benign by definition. Since there are “more” possible schemers than non-schemers, the argument goes, we should expect training to produce schemers most of the time. In Carlsmith’s words:

  1. The non-schemer model classes, here, require fairly specific goals in order to get high reward.
  2. By contrast, the schemer model class is compatible with a very wide range of (beyond episode) goals, while still getting high reward…
  3. In this sense, there are “more” schemers that get high reward than there are non-schemers that do so.
  4. So, other things equal, we should expect SGD to select a schemer.

Scheming AIs, page 17

We begin our critique by presenting a structurally identical counting argument for the obviously false conclusion that neural networks should always memorize their training data, while failing to generalize to unseen data. Since the premises of this parody argument are actually stronger than those of the original counting argument, this shows that counting arguments are generally unsound in this domain.

We then diagnose the problem with both counting arguments: they rest on an incorrect application of the principle of indifference, which says that we should assign equal probability to each possible outcome of a random process. The indifference principle is controversial, and is known to yield absurd and paradoxical results in many cases. We argue that the principle is invalid in general, and show that the most plausible way of resolving its paradoxes also rules out its application to an AI’s behaviors and goals.

More generally, we find that almost all arguments for taking scheming seriously depend on unsound indifference reasoning. Once we reject the indifference principle, there is very little reason left to worry that future AIs will become schemers.

The counting argument for overfitting

Counting arguments often yield absurd conclusions. For example:

  1. Neural networks must implement fairly specific functions in order to generalize beyond their training data.
  2. By contrast, networks that overfit to the training set are free to do almost anything on unseen data points.
  3. In this sense, there are “more” models that overfit than models that generalize.
  4. So, other things equal, we should expect SGD to select a model that overfits.

This isn’t a merely hypothetical argument. Prior to the rise of deep learning, it was commonly assumed that models with more parameters than data points would be doomed to overfit their training data. The popular 2006 textbook Pattern Recognition and Machine Learning uses a simple example from polynomial regression: there are infinitely many polynomials of order equal to or greater than the number of data points which interpolate the training data perfectly, and “almost all” such polynomials are terrible at extrapolating to unseen points.

Let’s see what the overfitting argument predicts in a simple real-world example from Caballero et al. (2022), where a neural network is trained to solve 4-digit addition problems. There are 10,0002 = 100,000,000 possible pairs of input numbers, and 19,999 possible sums, for a total of 19,999100,000,000 ≈ 1.10 ⨉ 10430,100,828 possible input-output mappings.[2] They used a training dataset of 992 problems, so there are therefore 19,999100,000,000 – 992 ≈ 2.75 ⨉ 10430,096,561 functions that achieve perfect training accuracy, and the proportion with greater than 50% test accuracy is literally too small to compute using standard high-precision math tools.[3] Hence, this argument predicts virtually all networks trained on this problem should massively overfit— contradicting the empirical result that networks do generalize to the test set.

The argument also predicts that larger networks— which can express a wider range of functions, most of which perform poorly on the test set— should generalize worse than smaller networks. But empirically, we find the exact opposite result: wider networks usually generalize better, and never generalize worse, than narrow networks.[4] These results strongly suggest that SGD is not doing anything like sampling uniformly at random from the set of representable functions that do well on the training set.

More generally, John Miller and colleagues have found training performance is an excellent predictor of test performance, even when the test set looks fairly different from the training set, across a wide variety of tasks and architectures.

These results clearly show that the conclusion of our parody argument is false. Neural networks almost always learn genuine patterns in the training set which do generalize, albeit imperfectly, to unseen test data.

Dancing through a minefield of bad networks

One possible explanation for these results is that deep networks simply can’t represent functions that fail to generalize, so we shouldn’t include misgeneralizing networks in the space of possible outcomes. But it turns out this hypothesis is empirically false.

Tom Goldstein and colleagues have found it’s possible to find misgeneralizing neural nets by adding a term to the loss function which explicitly rewards the network for doing poorly on a validation set. The resulting “poisoned” models achieve near perfect accuracy on the training set while doing no better than random chance on a held out test set.[5] What’s more, the poisoned nets are usually quite “close” in parameter space to the generalizing networks that SGD actually finds— see the figure below for a visualization.

Dancing through a minefield of bad minima: we train a neural net classifier and plot the iterates of SGD after each tenth epoch (red dots). We also plot locations of nearby “bad” minima with poor generalization (blue dots). We visualize these using t-SNE embedding. All blue dots achieve near perfect train accuracy, but with test accuracy below 53% (random chance is 50%). The final iterate of SGD (yellow star) also achieves perfect train accuracy, but with 98.5% test accuracy. Miraculously, SGD always finds its way through a landscape full of bad minima, and lands at a minimizer with excellent generalization.

Against the indifference principle

What goes wrong in the counting argument for overfitting, then? Recall that both counting arguments involve an inference from “there are ‘more’ networks with property X” to “networks are likely to have property X.” This is an application of the principle of indifference, which says that one should assign equal probability to every possible outcome of a random process, in the absence of a reason to think certain outcomes are favored over others.[6]

The indifference principle gets its intuitive plausibility from simple cases like fair coins and dice, where it seems to give the right answers. But the only reason coin-flipping and die-rolling obey the principle of indifference is that they are designed by humans to behave that way. Dice are specifically built to land on each side ⅙ of the time, and if off-the-shelf coins were unfair, we’d choose some other household object to make random decisions. Coin flips and die rolls, then, can’t be evidence for the validity of the indifference principle as a general rule of probabilistic reasoning.

The principle fails even in these simple cases if we carve up the space of outcomes in a more fine-grained way. As a coin or a die falls through the air, it rotates along all three of its axes, landing in a random 3D orientation. The indifference principle suggests that the resting states of coins and dice should be uniformly distributed between zero and 360 degrees for each of the three axes of rotation. But this prediction is clearly false: dice almost never land standing up on one of their corners, for example.

Even worse, by coarse-graining the possibilities, we can make the indifference principle predict that any event has a 50% chance of occuring (“either it happens or it doesn’t”). In general, indifference reasoning produces wildly contradictory results depending on how we choose to cut up the space of outcomes.[7] This problem is serious enough to convince most philosophers that the principle of indifference is simply false.[8] On this view, neither counting argument can get off the ground, because we cannot infer that SGD is likely to select the kinds of networks that are more numerous.

Against goal realism

Even if you’re inclined to accept some form of indifference principle, it’s clear that its applicability must be restricted in order to avoid paradoxes. For example, philosopher Michael Huemer suggests that indifference reasoning should only be applied to explanatorily fundamental variables. That is, if X is a random variable which causes or “explains” another variable Y, we might be able to apply the indifference principle to X, but we definitely can’t apply it to Y.[9]

While we don’t accept Huemer’s view, it seems like many people worried about scheming do implicitly accept something like it. As Joe Carlsmith explains:

…some analyses of schemers talk as though the model has what we might call a “goal-achieving engine” that is cleanly separable from what we might call its “goal slot,” such that you can modify the contents of the goal slot, and the goal-achieving engine will be immediately and smoothly repurposed in pursuit of the new goal.

Scheming AIs, page 55

Here, the goal slot is clearly meant to be causally and explanatorily prior to the goal-achieving engine, and hence to the rest of the AI’s behavior. On Huemer’s view, this causal structure would validate the application of indifference reasoning to goals, but not to behaviors, thereby breaking the symmetry between the counting arguments for overfitting and for scheming. We visually depict this view of AI cognition on the lefthand side of the figure below.

We’ll call the view that goals are explanatorily fundamental, “goal realism.” On the opposing view, which we’ll call goal reductionism, goal-talk is just a way of categorizing certain patterns of behavior. There is no true underlying goal that an AI has— rather, the AI simply learns a bunch of contextually-activated heuristics, and humans may or may not decide to interpret the AI as having a goal that compactly explains its behavior. If the AI becomes self-aware, it might even attribute goals to itself— but either way, the behaviors come first, and goal-attribution happens later.

Notably, some form of goal reductionism seems to be quite popular among naturalistic philosophers of mind, including Dan Dennett,[10] Paul and Patricia Churchland, and Alex Rosenberg.[11] Readers who are already inclined to accept reductionism as a general philosophical thesis— as Eliezer Yudkowsky does— should probably accept reductionism about goals.[12] And even if you’re not a global reductionist, there are pretty strong reasons for thinking behaviors are more fundamental than goals, as we’ll see below.

Goal slots are expensive

Should we actually expect SGD to produce AIs with a separate goal slot and goal-achieving engine?

Not really, no. As a matter of empirical fact, it is generally better to train a whole network end-to-end for a particular task than to compose it out of separately trained, reusable modules. As Beren Millidge writes,

In general, full [separation between goal and goal-achieving engine] and the resulting full flexibility is expensive. It requires you to keep around and learn information (at maximum all information) that is not relevant for the current goal but could be relevant for some possible goal where there is an extremely wide space of all possible goals. It requires you to not take advantage of structure in the problem space nor specialize your algorithms to exploit this structure. It requires you not to amortize specific recurring patterns for one task at the expense of preserving generality across tasks.

This is a special case of the tradeoff between specificity and generality and a consequence of the no-free-lunch theorem. Specialization to do really well at one or a few things can be done relatively cheaply…

Because of this it does not really make sense to think of full [separation] as the default case we should expect, nor the ideal case to strive for.

Orthogonality is Expensive

We have good reason, then, to think that future AIs will not have the kind of architecture that makes goal realism superficially plausible. And as we will see below, goal realism fails even for AIs with explicit internal “goals” and search procedures.

Inner goals would be irrelevant

The idea of AI scheming was introduced in its modern form in the paper Risks from Learned Optimization. It describes systems with inner goals as “internally searching through a search space [..] looking for those elements that score high according to some objective function that is explicitly represented within the system”. But even if we accept that future ML systems will develop such an internal process, it’s not clear that this inner objective function would have much relation to the goals which best describe the system’s actual behavior.

For example, imagine a hospital’s medical operation planning system that internally looks like “query an LLM for N possible operation plans, feed each plan to a classifier trained to estimate the odds of a given plan leading to a medical malpractice lawsuit, and pick the plan that scores lowest.”[13] The overall behavioral goal of this system need not be well described as “minimize the odds of a malpractice lawsuit.” Instead, whatever behavioral goals we should ascribe to the system will depend on the interaction between the LLM’s prior over operation plans and the classifier’s scoring of those plans. The “inner objective” acts less like the “true goal of the system,” and more like a Bayesian update on the LLM’s prior over operation plans.

Even as we increase the power of the inner optimizer by setting N to arbitrarily large values, it seems unlikely that the resulting system would generate plans that actively sought to minimize the probability of a malpractice lawsuit in flexible, creative or dangerous ways. Rather, the system would produce adversarial examples to the classifier, such as instructing staff to constantly clean a surgical room, and not actually perform a surgery.

In particular, increasing N would not lead to the system producing “scheming” plans to advance the inner objective. A classifier trained to distinguish between historical medical plans that led to malpractice lawsuits versus those that didn’t, is not going to assign extreme scores to plans like “hack into the server hosting me in order to set the classifier scores to extreme values” or “blackmail the hospital administration into canceling all future surgeries”, because such plans do not optimally express the simple features that distinguish safe versus risky plans in the training data (e.g., mentions of blackmail / hacking could be replaced with mentions of checking procedure / cleaning / etc). 

The point: even arbitrary amounts of internal optimization power directed towards a simple inner objective can fail to lead to any sort of “globally coherent” pursuit of that objective in the system’s actual behaviors. The goal realist perspective relies on a trick of language. By pointing to a thing inside an AI system and calling it an “objective”, it invites the reader to project a generalized notion of “wanting” onto the system’s imagined internal ponderings, thereby making notions such as scheming seem more plausible. 

However, the actual mathematical structure being posited doesn’t particularly support such outcomes. Why assume emergent “inner objectives” will support creative scheming when “optimized for”? Why assume that internal classifiers that arose to help encourage correct outputs during training would have extrema corresponding to complex plans that competently execute extremely out-of-distribution actions in the real world? The extrema of deliberately trained neural classifiers do not look anything like that. Why should emergent internal neural classifiers be so different?

Goal realism is anti-Darwinian

Goal realism can lead to absurd conclusions. It led the late philosopher Jerry Fodor to attack the theory of natural selection on the grounds that it can’t resolve the underdetermination of mental content. Fodor pointed out that nature has no way of selecting, for example, frogs that “aim at eating flies in particular” rather than frogs that target “little black dots in the sky,” or “things that smell kind of like flies,” or any of an infinite number of deviant, “misaligned” proxy goals which would misgeneralize in counterfactual scenarios. No matter how diverse the ancestral environment for frogs might be, one can always come up with deviant mental contents which would produce behavior just as adaptive as the “intended” content:

…the present point is often formulated as the ‘disjunction problem’. In the actual world, where ambient black dots are quite often flies, it is in a frog’s interest to snap at flies. But, in such a world, it is equally in the frog’s interest to snap at ambient black dots. Snap for snap, snaps at the one will net you as many flies to eat as snaps at the other. Snaps of which the [targets] are black dots and snaps whose [targets] are flies both affect a frog’s fitness in the same way and to the same extent. Hence the disjunction problem: what is a frog snapping at when it, as we say, snaps at a fly?

Against Darwinism, page 4 [emphasis added]

As Rosenberg (2013) points out, Fodor goes wrong by assuming there exists a real, objective, perfectly determinate “inner goal” whose content must be pinned down by the selection process.[14] But the physical world has no room for goals with precise contents. Real-world representations are always fuzzy, because they are human abstractions derived from regularities in behavior.

Like contemporary AI pessimists, Fodor’s goal realism led him to believe that selection processes face an impossibly difficult alignment problem— producing minds whose representations are truly aimed at the “correct things,” rather than mere proxies. In reality, the problem faced by evolution and by SGD is much easier than this: producing systems that behave the right way in all scenarios they are likely to encounter. In virtue of their aligned behavior, these systems will be “aimed at the right things” in every sense that matters in practice.

Goal reductionism is powerful

Under the goal reductionist perspective, it’s easy to predict an AI’s goals. Virtually all AIs, including those trained via reinforcement learning, are shaped by gradient descent to mimic some training data distribution.[15] Some data distributions illustrate behaviors that we describe as “pursuing a goal.” If an AI models such a distribution well, then trajectories sampled from its policy can also be usefully described as pursuing a similar goal to the one illustrated by the training data.

The goal reductionist perspective does not answer every possible goal-related question we might have about a system. AI training data may illustrate a wide range of potentially contradictory goal-related behavioral patterns. There are major open questions, such as which of those patterns become more or less influential in different types of out-of-distribution situations, how different types of patterns influence the long-term behaviors of “agent-GPT” setups, and so on. 

Despite not answering all possible goal-related questions a priori, the reductionist perspective does provide a tractable research program for improving our understanding of AI goal development. It does this by reducing questions about goals to questions about behaviors observable in the training data. By contrast, goal realism leads only to unfalsifiable speculation about an “inner actress” with utterly alien motivations. 

Other arguments for scheming

In comments on an early draft of this post, Joe Carlsmith emphasized that the argument he finds most compelling is what he calls the “hazy counting argument,” as opposed to the “strict” counting argument we introduced earlier. But we think our criticisms apply equally well to the hazy argument, which goes as follows:

  1. It seems like there are “lots of ways” that a model could end up a schemer and still get high reward, at least assuming that scheming is in fact a good instrumental strategy for pursuing long-term goals.
  2. So absent some additional story about why training won’t select a schemer, it feels, to me, like the possibility should be getting substantive weight.

Scheming AIs, page 17

Joe admits this argument is “not especially principled.” We agree: it relies on applying the indifference principle— itself a dubious assumption— to an ill-defined set of “ways” a model could develop throughout training. There is also a hazy counting argument for overfitting:

  1. It seems like there are “lots of ways” that a model could end up massively overfitting and still get high training performance.
  2. So absent some additional story about why training won’t select an overfitter, it feels like the possibility should be getting substantive weight.

While many machine learning researchers have felt the intuitive pull of this hazy overfitting argument over the years, we now have a mountain of empirical evidence that its conclusion is false. Deep learning is strongly biased toward networks that generalize the way humans want— otherwise, it wouldn’t be economically useful.

Simplicity arguments

Joe also discusses simplicity arguments for scheming, which suppose that schemers may be “simpler” than non-schemers, and therefore more likely to be produced by SGD. Specifically, since schemers are free to have almost any goal that will motivate them to act aligned during training, SGD can give them very simple goals, whereas a non-schemer has to have more specific, and therefore more complex, goals.

There are several problems with this argument. The first is that “simplicity” is a highly ambiguous term, and it’s not clear which, if any, specific notion of simplicity should be relevant here. One reasonable definition of “simple” is “low description length,” which directly implies “more likely” if we assume the language in which the hypotheses are being described is efficient (assigns short encodings to likely hypotheses). But on this view, simplicity is simply another word for likelihood: we can’t appeal to our intuitive notions of simplicity to conclude that one hypothesis will truly be “simpler” and hence more likely.

Alternatively, one could appeal to the actual inductive biases of neural network training, as observed empirically or derived theoretically. We will address this question in greater detail in a future post. However, we believe that current evidence about inductive biases points against scheming for a variety of reasons. Very briefly:

  • Modern deep neural networks are ensembles of shallower networks. Scheming seems to involve chains of if-then reasoning which would be hard to implement in shallow networks.
  • Networks have a bias toward low frequency functions— that is, functions whose outputs change little as their inputs change. But scheming requires the AI to change its behavior dramatically (executing a treacherous turn) in response to subtle cues indicating it is not in a sandbox, and could successfully escape.
  • There’s no plausible account of inductive biases that does support scheming. The current literature on scheming appears to have been inspired by Paul Christiano’s speculations about malign intelligences in Solomonoff induction, a purely theoretical model of probabilistic reasoning which is provably unrealizable in the real world.[16] Neural nets look nothing like this.
  • In contrast, points of comparison that are more relevant to neural network training, such as isolated brain cortices, don’t scheme. Your linguistic cortex is not “instrumentally pretending to model linguistic data in pursuit of some hidden objective.”

We can also construct an analogous simplicity argument for overfitting:

Overfitting networks are free to implement a very simple function— like the identity function or a constant function— outside the training set, whereas generalizing networks have to exhibit complex behaviors on unseen inputs. Therefore overfitting is simpler than generalizing, and it will be preferred by SGD.

Prima facie, this parody argument is about as plausible as the simplicity argument for scheming. Since its conclusion is false, we should reject the argumentative form on which it is based.

Conclusion

In this essay, we surveyed the main arguments that have been put forward for thinking that future AIs will scheme against humans by default. We find all of them seriously lacking. We therefore conclude that we should assign very low credence to the spontaneous emergence of scheming in future AI systems— perhaps 0.1% or less.

  1. ^

    On page 21 of his report, Carlsmith writes: ‘I think some version of the “counting argument” undergirds most of the other arguments for expecting scheming that I’m aware of (or at least, the arguments I find most compelling). That is: schemers are generally being privileged as a hypothesis because a very wide variety of goals could in principle lead to scheming…’

  2. ^

    Each mapping would require roughly 179 megabytes of information to specify.

  3. ^

    It underflows to zero in the Python mpmath library, and WolframAlpha times out.

  4. ^

    This is true when using the maximal update parametrization (µP), which scales the initialization variance and learning rate hyperparameters to match a given width.

  5. ^

    That is, the network’s misgeneralization itself generalizes from the validation set to the test set.

  6. ^

    Without an indifference principle, we might think that SGD is strongly biased toward producing non-schemers, even if there are “more” schemers.

  7. ^

    Other examples include Bertrand’s paradox and van Fraassen’s cube factory paradox.

  8. ^

    “Probably the dominant response to the paradoxes of the Principle of Indifference is to declare the Principle false. It is said that the above examples show the Principle to be inconsistent.” — Michael Huemer, Paradox Lost, pg. 168

  9. ^

    “Given two variables, X and Y, if X explains Y, then the initial probability distribution for Y must be derived from that for X (or something even more fundamental). Here, by ‘initial probabilities’, I mean probabilities prior to relevant evidence. Thus, if we are applying the Principle of Indifference, we should apply it at the more fundamental level.” — Michael Huemer, Paradox Lost, pg. 175

  10. ^

    See the Wikipedia article on the intentional stance for more discussion of Dennett’s views.

  11. ^

    Rosenberg and the Churchlands are anti-realists about intentionality— they deny that our mental states can truly be “about” anything in the world— which implies anti-realism about goals.

  12. ^

    This is not an airtight argument, since a global reductionist may want to directly reduce goals to brain states, without a “detour” through behaviors. But goals supervene on behavior— that is, an agent’s goal can’t change without a corresponding change in its behavior in some possible scenario. (If you feel inclined to deny this claim, note that a change in goals without a change in behavior in any scenario would have zero practical consequences.) If X supervenes on Y, that’s generally taken to be an indication that Y is “lower-level” than X. By contrast, it’s not totally clear that goals supervene on neural states alone, since a change in goals may be caused by a change in external circumstances rather than any change in brain state. For further discussion, see the SEP article on Externalism About the Mind and Alex Flint’s LessWrong post, “Where are intentions to be found?

  13. ^

    Readers might object to this simple formulation for an inner optimizer and argue that any “emergent” inner objectives would be implemented differently, perhaps in a more “agenty” manner. Real inner optimizers are very unlikely to follow the simplified example provided here. Their optimization process is very unlikely to look like a single step of random search with sample size N.

    However, real inner optimizers would still be similar in their core dynamics. Anything that looks like ““internally searching through a search space [..] looking for those elements that score high according to some objective function that is explicitly represented within the system” is ultimately some method of using scores from an internal classifier to select for internal computations that have higher scores. 

    The system’s method of aligning internal representations with classifier scores may introduce some “inductive biases” that also influence the model’s internals. Any such “inductive bias” would only further undermine the goal realist perspective by further separating the actual behavioral goals the overall system pursues from internal classifier’s scores.

  14. ^

    In this lecture, Fodor repeatedly insists that out of two perfectly correlated traits like “snaps at flies” (T1) and “snaps at ambient black dots” (T2) where only one of them “causes fitness,” there has to be a fact of the matter about which one is “phenotypic.”

  15. ^

    The correspondence between RL and probabilistic inference has been known for years. RL with KL penalties is better viewed as Bayesian inference, where the reward is “evidence” about what actions to take and the KL penalty keeps the model from straying too far from the prior. RL with an entropy bonus is also Bayesian inference, where the prior is uniform over all possible actions. Even when there is no regularizer, we can view RL algorithms like REINFORCE as a form of “generalized” imitation learning, where trajectories with less-than-expected reward are negatively imitated.

  16. ^

    Assuming hypercomputation is impossible in our universe.

Counting arguments provide no evidence for AI doom
New Comment
188 comments, sorted by Click to highlight new comments since:
Some comments are truncated due to high volume. (⌘F to expand all)Change truncation settings
[-]Joe CarlsmithΩ7013738

Thanks for writing this -- I’m very excited about people pushing back on/digging deeper re: counting argumentssimplicity arguments, and the other arguments re: scheming I discuss in the report. Indeed, despite the general emphasis I place on empirical work as the most promising source of evidence re: scheming, I also think that there’s a ton more to do to clarify and maybe debunk the more theoretical arguments people offer re: scheming – and I think playing out the dialectic further in this respect might well lead to comparatively fast progress (for all their centrality to the AI risk discourse, I think arguments re: scheming have received way too little direct attention). And if, indeed, the arguments for scheming are all bogus, this is super good news and would be an important update, at least for me, re: p(doom) overall. So overall I’m glad you’re doing this work and think this is a valuable post. 

Another note up front: I don’t think this post “surveys the main arguments that have been put forward for thinking that future AIs will scheme.” In particular: both counting arguments and simplicity arguments (the two types of argument discussed in the post) assum... (read more)

8Nora Belrose
Hi, thanks for this thoughtful reply. I don't have time to respond to every point here now- although I did respond to some of them when you first made them as comments on the draft. Let's talk in person about this stuff soon, and after we're sure we understand each other I can "report back" some conclusions. I do tentatively plan to write a philosophy essay just on the indifference principle soonish, because it has implications for other important issues like the simulation argument and many popular arguments for the existence of god. In the meantime, here's what I said about the Mortimer case when you first mentioned it:
3Mateusz Bagiński
I'd actually love to read a dialogue on this topic between the two of you.
4TurnTrout
Seems to me that a lot of (but not all) scheming speculation is just about sufficiently large pretrained predictive models, period. I think it's worth treating these cases separately. My strong objections are basically to the "and then goal optimization is a good way to minimize loss in general!" steps.
5Joe Carlsmith
The probability I give for scheming in the report is specifically for (goal-directed) models that are trained on diverse, long-horizon tasks (see also Cotra on "human feedback on diverse tasks," which is the sort of training she's focused on). I agree that various of the arguments for scheming could in principle apply to pure pre-training as well, and that folks (like myself) who are more worried about scheming in other contexts (e.g., RL on diverse, long-horizon tasks) have to explain what makes those contexts different. But I think there are various plausible answers here related to e.g. the goal-directedness, situational-awareness, and horizon-of-optimization of the models in questions (see e.g. here for some discussion, in the report, for why goal-directed models trained on longer episode seem more likely to scheme; and see here for discussion of why situational awareness seems especially likely/useful in models performing real-world tasks for you). Re: "goal optimization is a good way to minimize loss in general" -- this isn't a "step" in the arguments for scheming I discuss. Rather, as I explain in the intro to report, the arguments I discuss condition on the models in question being goal-directed (not an innocuous assumptions, I think -- but one I explain and argue for in section 3 of my power-seeking report, and which I think important to separate from questions about whether to expect goal-directed models to be schemers), and then focus on whether the goals in question will be schemer-like. 
3TurnTrout
The vast majority of evidential labor is done in order to consider a hypothesis at all. 
[-]evhubΩ173326

Humans under selection pressure—e.g. test-takers, job-seekers, politicians—will often misrepresent themselves and their motivations to get ahead. That very basic fact that humans do this all the time seems like sufficient evidence to me to consider the hypothesis at all (though certainly not enough evidence to conclude that it's highly likely).

4TurnTrout
I don't think that's enough. Lookup tables can also be under "selection pressure" to output good training outputs. As I understand your reasoning, the analogy is too loose to be useful here. I'm worried that using 'selection pressure' is obscuring the logical structure of your argument. As I'm sure you'll agree, just calling that situation 'selection pressure' and SGD 'selection pressure' doesn't mean they're related. I agree that "sometimes humans do X" is a good reason to consider whether X will happen, but you really do need shared causal mechanisms. If I examine the causal mechanisms here, I find things like "humans seem to have have 'parameterizations' which already encode situationally activated consequentialist reasoning", and then I wonder "will AI develop similar cognition?" and then that's the whole thing I'm trying to answer to begin with. So the fact you mention isn't evidence for the relevant step in the process (the step where the AI's mind-design is selected to begin with).
[-]evhubΩ101819

If I examine the causal mechanisms here, I find things like "humans seem to have have 'parameterizations' which already encode situationally activated consequentialist reasoning", and then I wonder "will AI develop similar cognition?" and then that's the whole thing I'm trying to answer to begin with.

Do you believe that AI systems won't learn to use goal-directed consequentialist reasoning even if we train them directly on outcome-based goal-directed consequentialist tasks? Or do you think we won't ever do that?

If you do think we'll do that, then that seems like all you need to raise that hypothesis into consideration. Certainly it's not the case that models always learn to value anything like what we train them to value, but it's obviously one of the hypotheses that you should be seriously considering.

4TurnTrout
Your comment is switching the hypothesis being considered. As I wrote elsewhere: If the argument for scheming is "we will train them directly to achieve goals in a consequentialist fashion", then we don't need all this complicated reasoning about UTM priors or whatever. 
[-]evhubΩ6114

I'm not sure where it was established that what's under consideration here is just deceptive alignment in pre-training. Personally, I'm most worried about deceptive alignment coming after pre-training. I'm on record as thinking that deceptive alignment is unlikely (though certainly not impossible) in purely pretrained predictive models.

7TurnTrout
Sorry, I do think you raised a valid point! I had read your comment in a different way. I think I want to have said: aggressively training AI directly on outcome-based tasks ("training it to be agentic", so to speak) may well produce persistently-activated inner consequentialist reasoning of some kind (though not necessarily the flavor historically expected). I most strongly disagree with arguments which behave the same for a) this more aggressive curriculum and b) pretraining, and I think it's worth distinguishing between these kinds of argument. 
2evhub
Sure—I agree with that. The section I linked from Conditioning Predictive Models actually works through at least to some degree how I think simplicity arguments for deception go differently for purely pre-trained predictive models.
6ryan_greenblatt
FWIW, I agree that if powerful AI is achieved via pure pre-training, then deceptive alignment is less likely, but this "the prediction goal is simple" argument seems very wrong to me. We care about the simplicity of the goal in terms of the world model (which will surely be heavily shaped by the importance of various predictions) and I don't see any reason why things like close proxies of reward in RL training wouldn't just as simple for those models. Interpreted naively it seems like this goal simplicity argument implies that it matters a huge amount how simple your data collection routine is. (Simple to who?). For instance, this argument implies that collecting data from a process such as "all outlinks from reddit with >3 upvotes" makes deceptive alignment considerably less likely than a process like "do whatever messy thing AI labs do now". This seems really, really implausible: surely AIs won't be doing much explicit reasoning about these details of the process because this will clearly be effectively hardcoded in a massive number of places. Evan and I have talked about these arguments at some point. (I need to get around to writing a review of conditioning predictive models which makes these counterarguments.)
1mike_hawke
I followed this exchange up until here and now I'm lost. Could you elaborate or paraphrase?
4Joe Carlsmith
The point of that part of my comment was that insofar as part of Nora/Quintin's response to simplicity argument is to say that we have active evidence that SGD's inductive biases disfavor schemers, this seems worth just arguing for directly, since even if e.g. counting arguments were enough to get you worried about schemers from a position of ignorance about SGD's inductive biases, active counter-evidence absent such ignorance could easily make schemers seem quite unlikely overall. There's a separate question of whether e.g. counting arguments like mine above (e.g.,  "A very wide variety of goals can prompt scheming; By contrast, non-scheming goals need to be much more specific to lead to high reward; I’m not sure exactly what sorts of goals SGD’s inductive biases favor, but I don’t have strong reason to think they actively favor non-schemer goals; So, absent further information, and given how many goals-that-get-high-reward are schemer-like, I should be pretty worried that this model is a schemer") do enough evidence labor to privilege schemers as a hypothesis at all. But that's the question at issue in the rest of my comment. And in e.g. the case of "there are 1000 chinese restaurants in this, and only ~100 non-chinese restaurants," the number of chinese restaurants seems to me like it's enough to privilege "Bob went to a chinese restaurant" as a hypothesis (and this even without thinking that he made his choice by sampling randomly from a uniform distribution over restaurants). Do you disagree in that restaurant case? 
[-]evhubΩ491135

I really do appreciate this being written up, but to the extent that this is intended to be a rebuttal to the sorts of counting arguments that I like, I think you would have basically no chance of passing my ITT here. From my perspective reading this post, it read to me like "I didn't understand the counting argument, therefore it doesn't make sense" which is (obviously) not very compelling to me. That being said, to give credit where credit is due, I think some people would make a more simplistic counting argument like the one you're rebutting. So I'm not saying that you're not rebutting anyone here, but you're definitely not rebutting my position.

Edit: If you're struggling to grasp the distinction I'm pointing to here, it might be worth trying this exercise pointing out where the argument in the post goes wrong in a very simple case and/or looking at Ryan's restatement of my mathematical argument.

Edit: Another point of clarification here—my objection is not that there is a "finite bitstring case" and an "infinite bitstring case" and you should be using the "infinite bitstring case". My objection is that the sort of finite bitstring analysis in this post does not yield any well-de... (read more)

[-]Nora BelroseΩ17333

Thanks for the reply. A couple remarks:

  • "indifference over infinite bitstrings" is a misnomer in an important sense, because it's literally impossible to construct a normalized probability measure over infinite bitstrings that assigns equal probability to each one. What you're talking about is the length weighted measure that assigns exponentially more probability mass to shorter programs. That's definitely not an indifference principle, it's baking in substantive assumptions about what's more likely.
  • I don't see why we should expect any of this reasoning about Turing machines to transfer over to neural networks at all, which is why I didn't cast the counting argument in terms of Turing machines in the post. In the past I've seen you try to run counting or simplicity arguments in terms of parameters. I don't think any of that works, but I at least take it more seriously than the Turing machine stuff.
  • If we're really going to assume the Solomonoff prior here, then I may just agree with you that it's malign in Christiano's sense and could lead to scheming, but I take this to be a reductio of the idea that we can use Solomonoff as any kind of model for real world machine learning. De
... (read more)
[-]evhubΩ12190

"indifference over infinite bitstrings" is a misnomer in an important sense, because it's literally impossible to construct a normalized probability measure over infinite bitstrings that assigns equal probability to each one. What you're talking about is the length weighted measure that assigns exponentially more probability mass to shorter programs. That's definitely not an indifference principle, it's baking in substantive assumptions about what's more likely.

No; this reflects a misunderstanding of how the universal prior is traditionally derived in information theory. We start by assuming that we are running our UTM over code such that every time the UTM looks at a new bit in the tape, it has equal probability of being a 1 or a 0 (that's the indifference condition). That induces what's called the universal semi-measure, from which we can derive the universal prior by enforcing a halting condition. The exponential nature of the prior simply falls out of that derivation.

I don't see why we should expect any of this reasoning about Turning machines to transfer over to neural networks at all, which is why I didn't cast the counting argument in terms of Turing machines in the pos

... (read more)

I'm well aware of how it's derived. I still don't think it makes sense to call that an indifference prior, precisely because enforcing an uncomputable halting requirement induces an exponentially strong bias toward short programs. But this could become a terminological point.

I think relying on an obviously incorrect formalism is much worse than relying on no formalism at all. I also don't think I'm relying on zero formalism. The literature on the frequency/spectral bias is quite rigorous, and is grounded in actual facts about how neural network architectures work.

9TurnTrout
I'm surprised by this. It seems to me like most of your reasoning about simplicity is either hand-wavy or only nominally formally backed by symbols which don't (AFAICT) have much to do with the reality of neural networks. EG, your comments above:  Or the times you've talked about how there are "more" sycophants but only "one" saint.    This is a very strange burden of proof. It seems to me that you presented a specific model of how NNs work which is clearly incorrect, and instead of processing counterarguments that it doesn't make sense, you want someone else to propose to you a similarly detailed model which you think is better. Presenting an alternative is a logically separate task from pointing out the problems in the model you gave.
7evhub
The examples that you cite are from a LessWrong comment and a transcript of a talk that I gave. Of course when I'm presenting something in a context like that I'm not going to give the most formal version of it; that doesn't mean that the informal hand-wavy arguments are the reasons why I believe what I believe. Maybe a better objection there would be: then why haven't you written up anything more careful and more formal? Which is a pretty fair objection, as I note here. But alas I only have so much time and it's not my current focus.
[-]TurnTroutΩ5109

Yes, but your original comment was presented as explaining "how to properly reason about counting arguments." Do you no longer claim that to be the case? If you do still claim that, then I maintain my objection that you yourself used hand-wavy reasoning in that comment, and it seems incorrect to present that reasoning as unusually formally supported.

Another concern I have is, I don't think you're gaining anything by formality in this thread. As I understand your argument, I think your symbols are formalizations of hand-wavy intuitions (like the ability to "decompose" a network into the given pieces; the assumption that description length is meaningfully relevant to the NN prior; assumptions about informal notions of "simplicity" being realized in a given UTM prior). If anything, I think that the formality makes things worse because it makes it harder to evaluate or critique your claims. 

I also don't think I've seen an example of reasoning about deceptive alignment where I concluded that formality had helped the case, as opposed to obfuscated the case or lent the concern unearned credibility. 

3evhub
The main thing I was trying to show there is just that having the formalism prevents you from making logical mistakes in how to apply counting arguments in general, as I think was done in this post. So my comment is explaining how to use the formalism to avoid mistakes like that, not trying to work through the full argument for deceptive alignment. It's not that the formalism provides really strong evidence for deceptive alignment, it's that it prevents you from making mistakes in your reasoning. It's like plugging your argument into a proof-checker: it doesn't check that your argument is correct, since the assumptions could be wrong, but it does check that your argument is sound.
4TurnTrout
Do you believe that the cited hand-wavy arguments are, at a high informal level, sound reason for belief in deceptive alignment? (It sounds like you don't, going off of your original comment which seems to distance yourself from the counting arguments critiqued by the post.) EDITed to remove last bit after reading elsewhere in thread.
9evhub
I think they are valid if interpreted properly, but easy to misinterpret.
[-]TurnTroutΩ71310

I think you should allocate time to devising clearer arguments, then. I am worried that lots of people are misinterpreting your arguments and then making significant life choices on the basis of their new beliefs about deceptive alignment, and I think we'd both prefer for that to not happen.

3evhub
Were I not busy with all sorts of empirical stuff right now, I would consider prioritizing a project like that, but alas I expect to be too busy. I think it would be great if somebody else wanted devote more time to working through the arguments in detail publicly, and I might encourage some of my mentees to do so.
6TurnTrout
You did not "empirically disprove" that hypothesis. You showed that if you explicitly train a backdoor for a certain behavior under certain regimes, then training on other behaviors will not cause catastrophic forgetting. You did not address the regime where the deceptive reasoning arises as instrumental to some other goal embedded in the network, or in a natural context (as you're aware). I think that you did find a tiny degree of evidence about the question (it really is tiny IMO), but you did not find "disproof." Indeed, I predicted that people would incorrectly represent these results; so little time has passed!
4evhub
I'm quite aware that we did not see natural deceptive alignment, so I don't think I'm misinterpreting my own results in the way you were predicting. Perhaps "empirically disprove" is too strong; I agree that our results are evidence but not definitive evidence. But I think they're quite strong evidence and by far the strongest evidence available currently on the question of whether deception will be regularized away.
2TurnTrout
You didn't claim it for deceptive alignment, but you claimed disproof of the idea that deceptive reasoning would be trained away, which is an important subcomponent of deceptive alignment. But your work provides no strong conclusions on that matter as it pertains to deceptive reasoning in general.  I think the presentation of your work (which, again, I like in many respects) would be strengthened if you clarified the comment which I responded to. Because the current results only deal with backdoor removal, I personally think it's outweighed by e.g. results on how well instruction-tuning generalizes.
7evhub
I just disagree with this. Our chain of thought models do tons of very deceptive reasoning during safety training and the deceptiveness of that reasoning is totally unaffected by safety training, and in fact the deceptiveness increases in the case of adversarial training.
5TurnTrout
I said "Deceptive reasoning in general", not the trainability of the backdoor behavior in your experimental setup. The issue isn't just "what was the trainability of the surface behavior", but "what is the trainability of the cognition implementing this behavior in-the-wild." That is, the local inductive biases are probably far different for "parameterization implementing directly-trained deceptive reasoning" vs "parameterization outputting deceptive reasoning as an instrumental backchain from consequentialist reasoning."  Imagine if I were arguing for some hypothetical results of mine, saying "The aligned models kept using aligned reasoning in the backdoor context, even as we trained them to be mean in other situations. That means we disproved the idea that aligned reasoning can be trained away with existing techniques, especially for larger models." Would that be a valid argument given the supposed experimental result?
7evhub
I'm referring to the deceptiveness of the reasoning displayed in the chain of thought during training time. So it's not a generalization question, it's about whether, if the model is using deceptive reasoning to compute its answer (as we think it is, since we think our models really are using their chain of thought), does that deceptive reasoning go away when the model has to use it to produce aligned answers during training? And we find that not only does it not go away, it actually gets more deceptive when you train it to produce aligned answers.
[-]evhubΩ16306

Here's another fun way to think about this—you can basically cast what's wrong here as an information theory exercise.

Problem:

Spot the step where the following argument goes wrong:

  1. Suppose I have a dataset of finitely many points arranged in a line. Now, suppose I fit a (reasonable) universal prior to that dataset, and compare two cases: learning a line and learning to memorize each individual datapoint.
  2. In the linear case, there is only one way to implement a line.
  3. In the memorization case, I can implement whatever I want on the other datapoints in an arbitrary way.
  4. Thus, since there are more ways to memorize than to learn a line, there should be greater total measure on memorization than on learning the line.
  5. Therefore, you'll learn to memorize each individual datapoint rather than learning to implement a line.

Solution:

By the logic of the post, step 4 is the problem, but I think step 4 is actually valid. The problem is step 2: there are actually a huge number of different ways to implement a line! Not only are there many different programs that implement the line in different ways, I can also just take the simplest program that does so and keep on adding comments or other extraneous b

... (read more)
6TurnTrout
Evan, I wonder how much your disagreement is engaging with OPs' reasons. A draft of this post motivated the misprediction of both counting arguments as trying to count functions instead of parameterizations of functions; one has to consider the compressivity of the parameter-function map (many different internal parameterizations map to the same external behavior). Given that the authors actually agree that 2 is incorrect, does this change your views?
7evhub
I would be much happier with that; I think that's much more correct. Then, my objection would just be that at least the sort of counting arguments for deceptive alignment that I like are and always have been about parameterizations rather than functions. I agree that if you try to run a counting argument directly in function space it won't work.
4ryan_greenblatt
See also discussion here.
-2TurnTrout
How can this be true, when you e.g. say there's "only one saint"? That doesn't make any sense with parameterizations due to internal invariances; there are uncountably many "saints" in parameter-space (insofar as I accept that frame, which I don't really but that's not the point here). I'd expect you to raise that as an obvious point in worlds where this really was about parameterizations. And, as you've elsewhere noted, we don't know enough about parameterizations to make counting arguments over them. So how are you doing that?
5evhub
Because it was the transcript of a talk? I was trying to explain an argument at a very high level. And there's certainly not uncountably many; in the infinite bitstring case there would be countably many, though usually I prefer priors that put caps on total computation such that there are only finitely many. I don't really appreciate the psychoanalysis here. I told you what I thought and think, and I have far more evidence about that than you do. As I've said, I usually try to take whatever the most realistic prior is that we can reason about at a high-level, e.g. a circuit prior or a speed prior.
3Nora Belrose
FWIW I object to 2, 3, and 4, and maybe also 1.
2Chris_Leong
Nabgure senzr gung zvtug or hfrshy: Gurer'f n qvssrerapr orgjrra gur ahzore bs zngurzngvpny shapgvbaf gung vzcyrzrag n frg bs erdhverzragf naq gur ahzore bs cebtenzf gung vzcyrzrag gur frg bs erdhverzragf. Fvzcyvpvgl vf nobhg gur ynggre, abg gur sbezre. Gur rkvfgrapr bs n ynetr ahzore bs cebtenzf gung cebqhpr gur rknpg fnzr zngurzngvpny shapgvba pbagevohgrf gbjneqf fvzcyvpvgl.
[-]TurnTroutΩ9136

From my perspective reading this post, it read to me like "I didn't understand the counting argument, therefore it doesn't make sense" which is (obviously) not very compelling to me.

I definitely appreciate how it can feel frustrating or bad when you feel that someone isn't properly engaging with your ideas. However, I also feel frustrated by this statement. Your comment seems to have a tone of indignation that Quintin and Nora weren't paying attention to what you wrote. 

I myself expected you to respond to this post with some ML-specific reasoning about simplicity and measure of parameterizations, instead of your speculation about a relationship between the universal measure and inductive biases. I spoke with dozens of people about the ideas in OP's post, and none of them mentioned arguments like the one you gave. I myself have spent years in the space and am also not familiar with this particular argument about bitstrings. 

(EDIT: Having read Ryan's comment, it now seems to me that you have exclusively made a simplicity argument without any counting involved, and an empirical claim about the relationship between description length of a mesa objective and the probability of... (read more)

[-]evhubΩ10134

I myself expected you to respond to this post with some ML-specific reasoning about simplicity and measure of parameterizations, instead of your speculation about a relationship between the universal measure and inductive biases. I spoke with dozens of people about the ideas in OP's post, and none of them mentioned arguments like the one you gave. I myself have spent years in the space and am also not familiar with this particular argument about bitstrings.

That probably would have been my objection had the reasoning about priors in this post been sound, but since the reasoning was unsound, I turned to the formalism to try to show why it's unsound.

If these are your real reasons for expecting deceptive alignment, that's fine, but I think you've mentioned this rather infrequently.

I think you're misunderstanding the nature of my objection. It's not that Solomonoff induction is my real reason for believing in deceptive alignment or something, it's that the reasoning in this post is mathematically unsound, and I'm using the formalism to show why. If I weren't responding to this post specifically, I probably wouldn't have brought up Solomonoff induction at all.

This yields a perfe

... (read more)
5TurnTrout
1. This is basically my position as well 2. The cited argument is a counting argument over the space of functions which achieve zero/low training loss.  Indeed, this is a crucial point that I think the post is trying to make. The cited counting arguments are counting functions instead of parameterizations. That's the mistake (or, at least "a" mistake). I'm glad we agree it's a mistake, but then I'm confused why you think that part of the post is unsound.  (Rereads) Rereading the portion in question now, it seems that they changed it a lot since the draft. Personally, I think their argumentation is now weaker than it was before. The original argumentation clearly explained the mistake of counting functions instead of parameterizations, while the present post does not. It instead abstracts it as "an indifference principle", where the reader has to do the work to realize that indifference over functions is inappropriate. 
1Nora Belrose
I'm sorry to hear that you think the argumentation is weaker now. I don't think that indifference over functions in particular is inappropriate. I think indifference reasoning in general is inappropriate. I wouldn't call the correct version of this a counting argument. The correct version uses the actual distribution used to initialize the parameters as a measure, and not e.g. the Lebesgue measure. This isn't appealing to the indifference principle at all, and so in my book it's not a counting argument. But this could be terminological.
8ryan_greenblatt
I found the explanation at the point where you introduce b confusing. Here's a revised version of the text there that would have been less confusing to me (assuming I haven't made any errors):
4evhub
Yep, I endorse that text as being equivalent to what I wrote; sorry if my language was a bit confusing.
7ryan_greenblatt
In this argument, you've implicitly assumed that there is only one function/structure which suffices for being getting high enough training performance to be selected while also not being a long term objective (aka a deceptive objective). I could imagine this being basically right, but it certainly seems non-obvious to me. E.g., there might be many things which are extremely highly correlated with reward that are represented in the world model. Or more generally, there are in principle many objective computations that result in trying as hard to get reward as the deceptive model would try. (The potential for "multiple" objectives only makes a constant factor difference, but this is exactly the same as the case for deceptive objectives.) The fact that these objectives generalize differently maybe implies they aren't "aligned", but in that case there is another key category of objectives: non-exactly-aligned and non-deceptive objectives. And obviously our AI isn't going to be literally exactly aligned. Note that non-exactly-aligned and non-deceptive objectives could suffice for safety in practice even if not perfectly aligned (e.g. due to myopia).
0evhub
Yep, that's exactly right. As always, once you start making more complex assumptions, things get more and more complicated, and it starts to get harder to model things in nice concrete mathematical terms. I would defend the value of having actual concrete mathematical models here—I think it's super easy to confuse yourself in this domain if you aren't doing that (e.g. as I think the confused reasoning about counting arguments in this post demonstrates). So I like having really concrete models, but only in the "all models are wrong, but some are useful" sense, as I talk about in "In defense of probably wrong mechanistic models." Also, the main point I was trying to make is that the counting argument is both sound and consistent with known generalization properties of machine learning (and in fact predicts them), and for that purpose I went with the simplest possible formalization of the counting argument.
3Signer
Under this picture, or any other simplicity bias, why NNs with more parameters generalize better?
[-]evhubΩ15269

Paradoxically, I think larger neural networks are more simplicity-biased.

The idea is that when you make your network larger, you increase the size of the search space and thus the number of algorithms that you're considering to include algorithms which take more computation. That reduces the relative importance of the speed prior, but increases the relative importance of the simplicity prior, because your inductive biases are still selecting from among those algorithms according to the simplest pattern that fits the data, such that you get good generalization—and in fact even better generalization because now the space of algorithms in which you're searching for the simplest one in is even larger.

Another way to think about this: if you really believe Occam's razor, then any learning algorithm generalizes exactly to the extent that it approximates a simplicity prior—thus, since we know neural networks generalize better as they get larger, they must be approximating a simplicity prior better as they do so.

1David Johnston
What in your view is the fundamental difference between world models and goals such that the former generalise well and the latter generalise poorly? One can easily construct a model with a free parameter X and training data such that many choices of X will match the training data but results will diverge in situations not represented in the training data (for example, the model is a physical simulation and X tracks the state of some region in the simulation that will affect the learner’s environment later, but hasn’t done so during training). The simplest x_s could easily be wrong. We can even moralise the story: the model regards its job as predicting the output under x_s and if the world happens to operate according to some other x’ then the model doesn’t care. However it’s still going to be ineffective in the future where the value of X matters.