Confound it! Correlation is (usually) not causation! But why not?

bygwern5y9th Jul 201434 comments


It is widely understood that statistical correlation between two variables ≠ causation. But despite this admonition, people are routinely overconfident in claiming correlations to support particular causal interpretations and are surprised by the results of randomized experiments, suggesting that they are biased & systematically underestimating the prevalence of confounds/common-causation. I speculate that in realistic causal networks or DAGs, the number of possible correlations grows faster than the number of possible causal relationships. So confounds really are that common, and since people do not think in DAGs, the imbalance also explains overconfidence.

Full article: