The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 1 1 X 0 1 1 X X^2 1 1 X X^2 X X 1 1 1 1 1 1 1 1 X 0 X 0 X X X X X^2 X^2 X X X^2 X^2 1 0 0 1 1 1 1 1 1 1 X^2 X X 0 0 X X X^2 X 0 X X^2 X X X^2 1 X 1 1
0 X 0 X^2+X X^2 X^2+X X^2 X 0 X^2+X 0 X^2+X X^2 X X^2 X 0 X^2+X 0 X^2+X X^2 X X^2 X 0 X^2+X X^2+X X 0 X^2+X X^2+X X X^2 X X X X^2 X X X 0 X^2 0 X^2+X 0 X^2+X X^2 X X^2 X X^2+X X X^2+X X 0 X^2 X X X X 0 X^2 0 X^2 0 X^2 0 X^2 X^2+X X 0 X^2 X^2+X X X^2 0 X^2 X X^2 X^2+X X X X^2+X X X X 0 X^2 0 0 X^2 0 X^2
0 0 X^2 X^2 X^2 0 0 X^2 0 0 X^2 X^2 X^2 X^2 0 0 0 0 X^2 X^2 X^2 X^2 0 0 0 0 X^2 0 X^2 X^2 0 X^2 X^2 X^2 X^2 0 0 0 0 X^2 X^2 X^2 0 0 X^2 X^2 X^2 X^2 0 0 0 X^2 X^2 0 X^2 X^2 X^2 0 X^2 0 0 0 X^2 X^2 0 X^2 X^2 0 0 0 X^2 X^2 X^2 X^2 0 0 0 0 0 X^2 X^2 0 0 X^2 0 X^2 X^2 X^2 0 0 0 X^2 X^2
generates a code of length 93 over Z2[X]/(X^3) who´s minimum homogenous weight is 93.
Homogenous weight enumerator: w(x)=1x^0+12x^93+38x^94+7x^96+4x^97+2x^102
The gray image is a linear code over GF(2) with n=372, k=6 and d=186.
This code was found by Heurico 1.16 in 0.607 seconds.