Math is Subjunctively Objective

16Pyramid_Head3

6Ken_Sharpe2

5Student_Commenter

0Stephen2

10steven

16Brian4

5Vladimir_Nesov

1Jay3

4VAuroch

6Peter_Turney

0Ken_Sharpe2

2ME3

0steven

0Thomas_Schminke

0david2

0Peter_de_Blanc

0Steve_Downing

2michael_vassar3

9michael_vassar3

1Anonymous22

0Q_the_Enchanter

1steven

0Dmitriy_Kropivnitskiy

0Rolf_Andreassen

2AnnaSalamon

3steven

1TheWakalix

-1Thanatos_Savehn

1Larry_D'Anna

5DSimon

0Logos01

6buybuydandavis

0Richard_Kennaway

-1buybuydandavis

6nshepperd

-6Randolf

4jimrandomh

-2Randolf

2shminux

-2Randolf

2Sniffnoy

2Bugmaster

0Randolf

4Bugmaster

0Randolf

0Bugmaster

4Nornagest

4Bugmaster

1TheOtherDave

2Sniffnoy

2Sniffnoy

2Bugmaster

-4Randolf

3Bugmaster

-4Randolf

2Bugmaster

11pedanterrific

2Bugmaster

0Randolf

4Bugmaster

0Randolf

0Randolf

1JoshuaZ

0Randolf

3TheOtherDave

0Randolf

0DoubleReed

3Spinning_Sandwich

7shminux

0Wei Dai

0shminux

0kithpendragon

-2[anonymous]

0MrCheeze

0Kindly

0Jayson_Virissimo

3Kindly

1Ronny Fernandez

3Pentashagon

6shminux

3DaFranker

3shminux

0Pentashagon

3shminux

0Kindly

0shminux

3[anonymous]

2TheOtherDave

0shminux

2TheOtherDave

0shminux

0shminux

0Pentashagon

0shminux

-1Pentashagon

0[anonymous]

-2V_V

0Spinning_Sandwich

0Ronny Fernandez

1Yosarian2

5Qiaochu_Yuan

0Yosarian2

2Qiaochu_Yuan

-4[anonymous]

0Qiaochu_Yuan

3A1987dM

0Yosarian2

3Qiaochu_Yuan

0Jayson_Virissimo

2Qiaochu_Yuan

1VAuroch

-1MugaSofer

0Peterdjones

2A1987dM

0A1987dM

0aspera

0[anonymous]

1momom2

New Comment

118 comments, sorted by Click to highlight new comments since: Today at 8:10 PM

Some comments are truncated due to high volume. (⌘F to expand all)

Math is just a language. I say "just" not to discount its power, but because it really doesn't exist outside of our conception of it, just as English doesn't exist outside of our conception of it. It's a convention.

The key difference between math and spoken language is that it's unambiguous enough to extrapolate on fairly consistently. If English were that precise we might be able to find truth in the far reaches of the language, just like greek philosophers tried to do. With math, such a thing is actually possible.

So, 2+3=5 corresponds to your d...

Why do you have to say the math is "outside" the brain? I do understand that the model of the natural numbers is particularly useful in making elegant predictions about our physical universe, but why does that say something about the numbers or the math? The integers are an example of a formal system, but we can construct other formal systems where the formula 2+3=6 holds (I don't know of any *interesting* such formal systems, though). I can easily see that we have these formal systems, and we also have inductive arguments that they describe the...

This might be stupid, but it's probably more intelligent than the 'subjunctive mood' grammar-joke I was going to tell.

Suppose I say, "Even if my mother were kidnapped by terrorists, I would still consider all terrorists freedom-fighters."

Suppose I believe that with such conviction that I'm unable to imagine a reality in which, regardless of whether the physical state of my brain changes, it would not still be true that terrorists+mom=freedom fighters. (The "terms" of this "equation" don't necessarily correspond with anything i...

2+3=5 is an outcome of a set of artificial laws we can imagine. In that sense, it does exist "purely in your imagination", just as any number of hypothetical systems could exist. "2+3=5" doesn't stand alone without defining what it means - ie. the concept of a number, addition etc. It corresponds to the statement that IF addition is defined like so, numbers like this, and such-and-such rules of inference, then 2+2=5 is a true property of the system.

In a counterfactual world where people believe 2+3=6, in asking about addition you're still talking about the same system with the same rules, not the rules that describe whatever goes on in the minds of the people. (Otherwise you would be making a different claim about a different system.)

So yes, 2+3=5 is clearly true and has always been true even before humans because its a statement about a system defined in terms of its own rules. Any claims about it already include the system's presumptions because those are part of the question, and part of what it means to be "true".

2 rocks + 3 rocks is a different matter - you're talking about the observable world rather than a system where you get to define all...

*"But my dear sir, if the fact of 2 + 3 = 5 exists somewhere outside your brain... then where is it?"*

A mathematical truth can be formalized as output of a proof checking algorithm, and output of an algorithm can be verified to an arbitrary level of certainty (by running it again and again, on redundant substrate). When you say that something is mathematically true, it can be considered an estimation of counterfactual that includes building of such a machine.

*I am quite confident that the statement 2 + 3 = 5 is true; I am far less confident of what it means for a mathematical statement to be true.*

There are two complementary answers to this question that seem right to me: Quine's Two Dogmas of Empiricism and Lakoff and Núñez's Where Mathematics Comes From. As Quine says, first you have to get rid of the false distinction between analytic and synthetic truth. What you have instead is a web or network of mutually reinforcing beliefs. Parts of this web touch the world relatively closely (beliefs about counting shee...

Math isn't a language, mathematical notation is a language. Math is a subject matter that you can talk about in mathematical notation, or in English, etc.

What is the useful distinction here? Are you claiming that Math has a reality outside the notation? If Math isn't defined by the notation we use, then what is it?

I think it doesn't make sense to suggest that 2 + 3 = 5 is a belief. It is the result of a set of definitions. As long as we agree on what 2, +, 3, =, and 5 mean, we have to agree on what 2 + 3 = 5 means. I think that if your brain were subject to a neutrino storm and you somehow *felt* that 2 + 3 = 6, you would still be able to verify that 2 + 3 = 6 by other means, such as counting on your fingers.

I think once you start asking *why* these things are the way they are, don't you have to start asking why anything exists at all, and what it means for anything to ...

It seems to me that when I say "every Hilbert space is convex", I'm not saying something *in* math; I'm saying something *about* math, *in* English. Yes, I might talk about the world by saying "the world has the structure of a Hilbert space". But then I might talk about blog commenters (not the ones here at OB) by saying they are like a horde of poo-throwing chimpanzees, and yet that doesn't make primatology a language.

I would encourage Peter's route related to Quine. A formalist in Phil of Math would say that a mathematical statement is true if it can be derived from axiomatic set theory. That is, the truth of the statement is then grounded in formal logic. This does, of course, beg the question of what grounds our formal logic, but at least it puts basic arithmetic on more firm footing ... in Peter's words, even more deeply imbedded in our belief system.

Math isn't supposed to be some sort of universal truth, but I also don't think it's quite accurate so say it's just a language. It just happens to be a useful abstraction. Granted, an apparently universally useful abstraction, but it's still an invention of humans, the same as boolean logic or physical models.

I'm not convinced that it makes sense to talk about visualizing two dots and three dots that are six dots. I would say that the physical event of visualizing two dots and of visualizing three more dots IS the event "visualizing five dots". There is then a separate event, lets call it "describing what you have visualized", that can be mistaken. You can visualize five dots and as a result of interference in the information flow to your mouth end up saying "I see six dots". For that matter, you can visualize five dots, and as...

Can we taboo the words "math", "maths", and "mathematics"? I think there are mathematical facts and then there is the study of mathematical facts, and these two things are as different in the same sense that the universe isn't cosmology, crops aren't agronomy, minds aren't psychology, and so on.

3 + 2 = 6 for me if I choose to define 6 to signify five. 3 + 2 = 5 only for common mathematical definitions of 2, 3, 5, + and =. Otherwise everything is fine, your opponent agreed somewhere at the beginning, that a group of three objects (such as sheep) and two objects will make five objects for our definitions of two, three and five weather we exist or not.

Is it useful to say that "2+3=5" is our shorthand for referring to the infinite number of statements of this form:

2 sheep and 3 sheep make 5 sheep 2 rocks and 3 rocks make 5 rocks 2 dinis and 3 dinis make 5 dinis

and so forth? And that the external truth of the statement depends in principle on all these various testable sub-statements?

*"But my dear sir, if the fact of 2 + 3 = 5 exists somewhere outside your brain... then where is it?"*

The truth-condition for "There are five sheep in the meadow" concerns the state of the meadow.

My guess is that the truth condition for "2 + 3 = 5" concerns the (more complex, but unproblematically material) set of facts you present: the facts that e.g.:
*It's easy to find sheep for which two sheep and three sheep make five sheep
*It's fairly easy to build calculators that model what happens with the sheep
*It's fairly easy to evolv*...

I've been wondering. The conventional wisdom says that it's a problem for mathematical realism to explain how we can come to understand mathematical facts without causally interacting with them. But surely you could build causal diagrams with logical uncertainty in them and they would show that mathematical facts do indeed causally influence your brain?

Also, I would say the problem (if any) is the location of 2, 3, and 5, not the location of 2+3=5, unless the location of "Napoleon is dead" is also a problem.

16y

Where is the location of "dead"?

Isn't this George Berkeley's issue? Isn't math just the structural part of another sort of language? Isn't 2 + 3 = 5 the same as red and blue make purple in the sense that each observer has a sense of red, blue, purple, 2, 3 and 5 all his/her/its own?

If space aliens find Voyager and read 1 *, 2 , 3 *, 4

How then is "2" in any sense different than "red"? How then is "2" any more independently real than "red"?

"But my dear sir, if the fact of 2 + 3 = 5 exists somewhere outside your brain... then where is it?"

For some reason most mathematicians don't seem to feel this sort of ontological angst about what math really means or what it means for a mathematical statement to be true. I can't seem to articulate a single reason why this is, but let me say a few things that tend to wash away the angst.

it doesn't matter "where it is", it is a proven consequence of our axioms.

it is in every structure in the universe capable of representing integers

If you had a Turing machine that perfectly simulated the physical laws of our universe, could an external person use that machine's source code to derive the laws of arithmetic as they are within our universe, even if the laws of arithmetic for the external person's universe were *different*?

Suppose we think about it the opposite way: what if we built a machine that simulated the physical laws of a universe where 2+3 = 6, where if you stick 2 whatsits by 3 whatsits you get 6 whatsits total. What would that universe be like? Could it even be built?

It helps to differentiate between "real" and "existant". Mathematics is as real as the laws of logic -- neither, however, *exists*.

What is "real" is that which proscriptively constraints that which exists. That which exists is that which interacts directly with other phenomena which also exist (that also interact).

When we say "2+3=5" what we are doing is engaging in the definition of real patterns of that which exists. So while, yes, the *patterns themselves* are external to us; the terms we assign them are subjective....

I'm quite unconfident about this whole line of argument, and concerned that we're heading for some moral conclusions based on appeals to this argument. If you have to get into odd discussions about the truth and meaning of mathematical entities to make a metaethical l argument, I doubt you have a good metaethical argument.

The funny thing is I consider morality subjective objective, just like yummyness. What is subjectively yummy to you is an objective fact about you, just as what is moral to you is an objective fact about you. If we run the You algorithm t...

012y

Not arguing against what you said, but on your view, what, if anything, distinguishes morality from yumminess? Aren't they, as you describe them, just "what I like", applied to different classes of things, morality being about dealings with other people and yumminess being about food and drink?

-112y

I want to get to the end of the metaethics sequence before pontificating too much, but I'll say a little.
What is yummy? A sense of taste, an evaluation of a particular sensory modality which impels action - eat more.
What is scary? Well, also an evaluation, but not confined to a particular sensory modality. It's an evaluation of threat, a fairly complex evaluation, and it impels action too - fight or flight.
What is moral? The moral sense also evaluates - it evaluates the actions and attitudes of people, and it also impels action - attitudes and reward or punishment, for actions, for attitudes about actions, for properly rewarding/punishing actions, for properly rewarding/punishing attitudes about actions, ...

612y

I don't know about that. People continually make metaethical mistakes by assuming that "morality is defined by your brain" is the same as "morality is about your brain", and draw all kinds of faulty conclusions, like that unless there's a stone tablet somewhere out in space with the Thousand Commandments of Morality written on it, it must be okay for people -- in different societies, with different beliefs -- to torture children if they want to (because hey, if morality isn't objective it must be relative, right?). That's exactly the error being talked about here, collapsing levels, and I think it's kind of an important one, metaethically.

It doesn't really work this way. And to demonstrate, I bring up the prime numbers.

What many people don't quite understand is that mathematics, like the sciences does not *invent* things, it *discovers* them. The structures are *already there*. We did not invent cells, electricity, or gravity. They were already there. All Mathematics does is name them, categorize them, and show properties that they have. There is nothing *human* about the prime numbers, for instance. There really is nothing human about mathematics.

Counting is essentially the building block of all o...

311y

This is only true to a point. In some sense, yes, the real numbers are the only complete & [canonically] totally-ordered field, up to isomorphism; but this last part is a bit of a snag for the language being used here, since the tools used to develop the real numbers in those different ways are certainly created as much as language & software are created.
You could cling to the idea that even these things are merely "discovered," but eventually you'd find yourself talking about the Platonic ideal of the wobbly, scratched up table in the neighbors' house, and how the carpenter originally discovered the Form of this particular table.
This is more a criticism of the English words for invention, creation, discovery, & the like; but then, philosophy of math that gets too far afield from actually doing logic is basically just philosophy of language.

711y

That is not such an unquestionable truth, there are many different schools of thoughts. None overly useful.

011y

I'm not quite sure what you mean by that, but Platonism has been useful for inspiring Tegmark's Ultimate Ensemble, which has been useful for inspiring UDT.

011y

Can't say that I find either very useful (in the instrumentalist sense, anyway), but I suppose if you count inspiration for a couple of rather speculative ideas as useful, I agree.

I suggest this may be a map/territory problem. Math is part of the map, but it has no *physical* analog with the territory. Rather, it tells us (some of) what to expect about the way the territory behaves under certain specific conditions (like when two sheep and then three sheep leave the pen).

Another way to look at it is that quantity (on which math operates) is a quality, akin to redness or sourness, but operating only on groups. That is to say, there is something there that *causes* fiveness to appear in my brain, but that thing is not an inherent part of the sheep any more than fluffiness or whiteness. Thus '2+3=5' has the same truth value as 'black + white = gray'.

It seems that Mathematics as we know it (Russel's axioms) is both an emergent phenomenon as well as the most basic law of them all. In macroscopic physics we observe that two rocks next to three rocks is five rocks, two hydrogen atoms next to three hydrogen atoms is five hydrogen atoms, two oscilliations of a cyclic system followed by three more is five such, and so on and so forth... But the Schrodinger equation contains addition of complex numbers, which we know to be a superset of the naturals.

Man, I really need to write a top level article on the Tegmark IV Hypothesis.

012y

I don't think that what you just said means anything.

012y

I think he is trying to say he is a fictionalist.

312y

Oh, well if it has a name...

Why not call the set of all sets of actual objects with cardinality 3, "three", the set of all sets of physical objects with cardinality 2, "two", and the set of all sets of physical objects with cardinality 5, "five"? Then when I said that 2+3=5, all I would mean is that for any x in two and any y in three, the union of x and y is in five. If you allow sets of physical objects, and sets of sets of physical objects, into your ontology, then you got this; 2+3=5 no matter what anyone thinks, and two and three are real objects existing out there.

311y

Everywhere two and three things exist, "2 + 3 = 5" exists. Much like there is only one electron, there is one "2 + 3 = 5". Electrons and mathematics are described by their behaviors. "If the behavior of electrons exists outside your brain... then where is it?"
Everywhere.

611y

Some day EY will learn to taboo "exist", and that will be his awakening as an instrumentalist.

311y

Odd, EY never seemed to me as particularly opposed or holding views going against / away from instrumentalism, when I was reading the sequences.
I'm curious to see where that comment comes from.

311y

I cannot speak for him, but my understanding is that he identifies instrumentalism with "traditional rationality", which is but a small step toward Bayesianism.

011y

Isn't the territory and the map an explicit distinction between what exists and what we theorize?

311y

As I said many times before on this forum, the instrumental approach is that the map-territory distinction is a model, i.e. territory is in the map, not in the territory :)

011y

But should my map mark territory as being in the map, or in the territory?

011y

It helps if you start by tabooing the words "territory", "real", "exist" and explaining what you mean by them.

3[anonymous]11y

I think I see where you are coming from with that now.
It seems to me that the territory assumption is necessary for morality, and not much else (because we want to care about things that "exist", but otherwise probability theory is defined over possible observations only).
Of course a great number of unnecessary things have been called "necessary for morality"...
I'm going to read your comments a bit more and see if I can settle my mind on this instrumentalism thing. Do you reccommend anything I should check out?

211y

I think morality is a red herring here. "Wanting to care" about something is a confused state. I care about what I care about. If it so happens that what I care about is an element of a model rather than being something else, I don't necessarily stop caring about it solely because of that fact.
That said, personally my response to instrumentalism is to take a step back and talk about expectations regarding consistency.
If we can agree that some models support predictions of future experiences better than others, I'm content to either refer to the model that best supports those predictions as a reality that actually exists, as a territory that maps describe, or as my preferred model, depending on what language makes communication easier. I suppose you could say I'm a compatibilist with respect to instrumentalism.
If we can't agree on that, I'm not sure where to go from there.

011y

I used to feel the same way, but then it is easy to start arguing about the imagined parts of the territory for which no map can ever exist, because "the territory is out there", and about which of the many identical maps is "more right" (as opposed to "more useful for a given task"). And, given that there can be no experimental evidence to resolve such an argument, it can go on forever. Examples of this futile argument are How many angels can dance on the head of a pin?, QM interpretations, Tegmark's mathematical universe, statements like "every imaginable world exists" and other untestable nonsense.
As an engineer, I don't enjoy unproductive futile debates, so expending effort arguing about interpretations seems silly to me. Instrumentalism avoids worrying about "objective reality" and whether it has some yet-undiscovered "true laws" of which our theories are only an approximation. Life is easier that way. Or would be, were it not for the "realists", who keep insisting that their meta-model is the One True Path. That is not to say that I reject the map-territory distinction, I just place both parts of it inside the [meta]map.

211y

Agreed that futile debates are silly. (I do sometimes enjoy them, but only when they're fun.)
That said, I find it works for me, in order to avoid them, to accept that questions about the persistent thing (be it reality or a model) are only useful insofar as they lead us to a clearer understanding of the persistent thing. It's certainly possible to construct and argue about questions that don't do this, but it's not a useful thing to do, and I try to avoid it.
I haven't yet found it necessary to assert a firm position on the ontological nature of reality beyond "the persistent thing" in order to do that. Whether reality is "in the map" or "in the territory" or "doesn't exist at all" seems to me just another futile debate.

011y

I largely agree. I assert that the territory is in the map mostly as a Schelling fence of sorts, beyond which there is a slippery slope into philosophizing about untestables.

011y

I don't see how. Feel free to explicate.
Sorry. I wish I could say "Popper", since he basically , but he argued against Bohr's instrumentalism on some grounds I don't fully understand. quote from Wikipedia:
Usually when I read a critique of instrumentalism, it is straw-manned first (I think of it as InSTRAWmentalism). I am quite well aware that this could be a problem with my, admittedly patchy, understanding of the issue, and am happy to change my mind when a good argument comes along.

011y

Do you think the limit of the map as its error goes to zero exists? Do you think we will ever be able to determine whether or not the limit exists? What name would you give that limit if it existed?
I'm just trying to get a better idea of what you believe about instrumentalism. Personally, I think that every map is a territory (mathematical realism) because among all the vacuous explanations for why we experience something instead of nothing it seems to be a simpler model. Instrumentalism, in this case, means trying to figure out the probability distribution of the territories/maps you are a member of, or in other words which map is most likely to predict the measurements I make?
I can see how mathematical realism is obviated by Occam's Razor since it's not necessary to explain any measurement, but it's probably the best metaphysical idea I've ran into and it does lend some insight into the question of what to simulate (it doesn't matter; every simulation already exists just as much as we do), what to care about (everything happens in some universe, so just try to optimize your own), immortality (some universes have infinite time and energy, and some of those universes will simulate us), and god/Omega (there exist beings in other universes that simulate our universe, but it doesn't matter since our existence is independent of being simulated).

011y

The equivalent language I prefer is more lay-person: will science ever explain everything we observe and predict everything we may ever observe? And my answer is: there is no way to tell at this point, and the answer[ability] is not relevant to anything we do. After a moment of thought you can see that this might not even be the right question to ask: some day we might be powerful enough and smart enough to create new physical laws, so even defining such a limit will be meaningless.

-111y

Even if the Universe's fundamental nature can be changed without limit there would still be a current territory that hasn't changed yet. The future territory would be different, but if we knew how to create new laws we could also probably predict what the new territory would be like.
If the fundamental nature of the universe just changes over time on its own, then your argument is a lot stronger.

0[anonymous]11y

He explicitly identifies as a realist somewhere. Saying things along the lines of "once you have all these theories describing things, why postulate the additional fact that they don't exist?" (that's not an exact quote)

-211y

There
I already thought that Yudkowsky was a Platonist given his position on Everett's interpretation and Tegmark's multiverses, but that's can be cosidered conclusive evidence.

011y

Because that's how naive class theory works, not how consistent formal mathematics works.
The closest thing to a canonical approach these days is to start from what you have, nothing, and call that the first set. Then you make sets from those sets in a very restrictive, axiomatic way. Variants get as exotic as the surreal numbers, but the running theme is to avoid defining sets by intension unless you're quantifying over a known domain.
For the record, I don't think any of these things "exist" in any meaningful sense. We can do mathematics with inconsistent systems just as well, if less usefully. The law of non-contradiction is something I don't see how to get past (ie I can't comprehend such a thing), and there is nothing much else distinguishing the consistent systems as being anything other than collections of statements to the effect that this & that follow if we grant these or those axioms. (Fortunately, it's more interesting than that at the higher levels.)

011y

You've misunderstood me. It's really not at all conspicuous to allow a none-empty "set" into your ontology, but if you'd prefer we can talk about heaps; they serve for my purposes here (of course, by "heap", I mean any random pile of stuff). Every heap has parts: you're a heap of cells, decks are heaps of cards, masses are heaps of atoms, etc. Now if you apply a level filter to the parts of a heap, you can count them. For instance, I can count the organs in your body, count the organ cells in your body, and end up with two different values, though I counted the same object. The same object can constitute many heaps, as long as there are several ways of dividing the object into parts. So what we can do, is just talk about the laws of heap combination, rather than the laws of numbers. We don't require any further generality in our mathematics to do all our counting, and yet, the only objects I've had to adopt into my ontology are heaps (rather inconspicuous material fellows in IMHO).
I should mention that this is not my real suggestion for a foundation of mathematics, but when it comes to the challenge of interpreting the theory of natural numbers without adopting any ghostly quantities, heaps work just fine.
(edit): I should mention that while heaps, requiring only for you to accept a whole with parts, and a level test on any gven part, are much more ontologically inconspicuous than pure sets. Where exactly is the null set? Where is any pure set? I've never seen any of them. Of course, i see heaps all over the place.

In college, I made the observation that math majors tended to think that math itself was something real, while physcis majors, studying the exact same math in the same classes at the same time, tended to think that math was just a conceptual tool that was sometimes useful when trying to discover things about reality, but that math wasn't itself real. I'm not sure which view is more valid then the other, or how you even distinguish the two views.

511y

Taboo "real" (I find this a uniquely useless word in general) and I don't think the typical physics major and the typical math major are actually disagreeing about anything. Most of what I've heard physics and math people say on this subject is signaling tribe affiliation, e.g. "physics is to math as sex is to masturbation."

011y

It's possible that they are not, but it seems like there's more to the question that that.
I guess what I would say is "is math a fundamental property of the universe, like the laws of physcis, or is it a useful and consistent tool that only exists in our mind, like morality?"
You would probably have to break it down further then that. Pythagorean theorem clearly seems to be a property of the real world, as does pi, and geometry in general. Once you get to more abstract math, though, it becomes less clear to me if you are describing something fundamental or merely manipulating symbols.

211y

How would the world look different on each of those hypotheses? (Can you please taboo "fundamental" and "exists," too?)
You're confusing the map and the territory here. The Pythagorean theorem and pi are both mathematical features that fall out of a particular model of the world, namely Euclidean geometry, which is an inaccurate model for at least two historically major reasons (the Earth not being flat and relativity).

-4[anonymous]11y

Actually, the pythagorean theorem and pi still apply regardless of what dimension of geometry the world obeys (3-dimensional newtonian physics, 4-dimensional relativistic spacetime, 11-dimensional string theory, etc).

011y

I don't know what you mean by that.

311y

The Pythagorean theorem doesn't apply to curved space, only to flat space (regardless of number of dimension). And pi is the number 3.14159..., which can be defined in ways that have nothing to do with geometry, so I'd put it as "in convex (concave) space, the ratio of a circumference to its diameter is less (greater) than pi", not as "in convex (concave) space, pi is less (greater) than 3.14159...)".

011y

The Pythagorean theorem and pi could both accurately be described as predictive scientific hypothesis of observed phenomenon. "In 3 dimensional space, if I measure two sides of a right triangle, the third side will be the square root of the sum of the squares of the other two sides." That is a scientific hypothesis, and it can be tested; not only that, but you lose none of the meaning of Pythagorean theorem by putting it in those terms. (Yes, if you bring relativity into it, it turns out to be a slightly inaccurate hypothesis because of the curvature of space in a gravitational field, so I suppose that puts it in the same catagory of hypothesis as Newtonian physcis.) It still seems to be an attempt to describe a feature that exists in nature, though.
(minor edits for clarification)

311y

Ah. I wouldn't call that claim the Pythagorean theorem. To me, the Pythagorean theorem is a mathematical statement about mathematical objects called Euclidean triangles (or if we want to get really fancy, it's a statement about vectors in inner product spaces), and there is a separate claim, which is not mathematical, which asserts that a certain model which includes things like Euclidean triangles describes some part of the real world in some way.
In other words, I think it's sensible to enforce a strong separation between talking about the mathematical details of a mathematical model and the relation of that mathematical model to reality. To me this dissolves what I think your original question is (although I am not sure I have correctly understood what your original question is).
Maybe your question is secretly a question about the unreasonable effectiveness of mathematics in the natural sciences?

011y

How does "the Earth not being flat" make Euclidean geometry inaccurate?

211y

If you draw a big enough right triangle on the Earth, it will visibly fail to satisfy the Pythagorean theorem. The geometry of the Earth is approximately spherical geometry, not Euclidean geometry.

110y

Euclidean geometry is a set of principles and conclusions for flat space. That Earth is not flat in no way makes Euclidean geometry inaccurate.

-111y

Ultimately, while there is a useful distinction to be made here, I'm not sure this is the way to make it; most (all?) of what we call "laws of physics" are actually surface behaviors of more complex systems; models, ultimately, of the emergent behavior of a mathematically simpler yet chaotic and computationally dense reality. Which, when investigated, may prove less fundamental rules but rather guidelines to understanding the results of a truth you don't yet fully comprehend, and perhaps couldn't model if you did.

011y

There is nothing clear about either of those. Both can be proven without empirical investigation. P's T is not true in curved space.

211y

The theorem (as ISTM is understood nowadays) is a statement about flat space, so I'd put it as "it doesn't apply to curved space"; saying that it's false in curved space sounds to me like saying that "in the US, people drive on the right side of the road" is false in the UK.

You can set up a question, like 'How many sheep are in the field?', that isn't about any particular person's brain, and whose actual answer doesn't depend on any particular person's brain.

Then again, which field the phrase “the field” refers to does depend on who is asking the question where and when.

Judgments that depend on our representations of anyone's state of mind, like "It's okay to kiss someone only if they want to be kissed", are the exception rather than the rule.

Among all possible judgements, sure; but among all those judgements that a real person will have to make in the real world...

It makes no sense to call something “true” without specifying prior information. That would imply that we could never update on evidence, which we know not to be the case for statements like “2 + 3 = 5.” Much of the confusion comes from different people meaning different things by the proposition “2 + 3 = 5,” which we can resolve as usual by tabooing the symbols.

Consider the propositions "
A =“The next time I put two sheep and three sheep in a pen, I will end up with five sheep in the pen.”

B = “The universe works as if in all cases, combining two of s...

The map is not the territory. There's no little XML tag attached to helium atoms with the wave equation written on it. Math was created by humans to describe our observations - we didn't arrive at it by pure thought. The reason 2 + 3 = 5 is a theorem of Peano arithmetic *and* moving three large, distinct objects next to two large, distinct objects makes a group of five large, distinct objects is the *correspondence* of the Peano axioms and inference rules to *reality*.

So I think Eliezer's error here was a fallacy of compression. "2 + 3 = 5" refers to t...

That's interesting... Did you actually count sheep and rocks when writing this article? Did the character you give voice to count sheep and rocks?

Usually, when I make this kind of arguments, what I really say is "If I counted 2 sheep and 3 sheep, I would find 5 sheep" which means that it actually is what I expect, but that's not evidence if my cognition process is put into question.

Yet, I don't think it is necessary to actually count sheep and rocks when making this argument... But if I was discussing with someone who thought that 2 + 3 = 6 (or someone who thinks that either answer is meaningless), then it would be necessary to make the experiment, because we would expect different results.

Followup to:Probability is Subjectively Objective, Can Counterfactuals Be True?I am quite confident that the statement 2 + 3 = 5 is

true; I am far less confident of what itmeansfor a mathematical statement to be true.In "The Simple Truth" I defined a pebble-and-bucket system for tracking sheep, and defined a condition for whether a bucket's pebble level is "true" in terms of the sheep. The bucket is the belief, the sheep are the reality. I believe 2 + 3 = 5. Not just that two sheep plus three sheep equal five sheep, but that 2 + 3 = 5. That is my belief, but where is the reality?

So now the one comes to me and says: "Yes, two sheep plus three sheep equals five sheep, and two stars plus three stars equals five stars. I won't deny that. But this notion that 2 + 3 = 5,

exists only in your imagination, and is purely subjective."So I say: Excuse me,

what?And the one says: "Well, I know what it means to observe two sheep and three sheep leave the fold, and five sheep come back. I know what it means to press '2' and '+' and '3' on a calculator, and see the screen flash '5'. I even know what it means to ask someone 'What is two plus three?' and hear them say 'Five.' But you insist that there is some fact

beyondthis. You insist that 2 + 3 = 5."Well, it kinda

is."Perhaps you just mean that when you

mentally visualizeadding two dots and three dots, you end up visualizing five dots. Perhaps this is the content of what you mean by saying, 2 + 3 = 5. I have no trouble with that, for brains are as real as sheep."No, for it seems to me that 2 + 3 equaled 5

beforethere were any humans around to do addition. When humans showed up on the scene, they did notmake2 + 3 equal 5 by virtue of thinking it. Rather, they thought that '2 + 3 = 5'because2 + 3 did in fact equal 5."Prove it."

I'd love to, but I'm busy; I've got to, um, eat a salad.

"The

reason you believethat 2 + 3 = 5, is your mental visualization of two dots plus three dots yielding five dots. Does this not imply that this physical event in your physical brain is themeaningof the statement '2 + 3 = 5'?"But I honestly don't think that

iswhat I mean. Suppose that by an amazing cosmic coincidence, a flurry of neutrinos struck my neurons, causing me to imagine two dots colliding with three dots and visualize six dots. I would then say, '2 + 3 = 6'. But this wouldn't mean that 2 + 3 actuallyhadbecome equal to 6. Now, if what I mean by '2 + 3' consists entirely of what my mere physical brain merelyhappens to output, then a neutrinocouldmake 2 + 3 = 6. But you can't change arithmetic by tampering with a calculator."Aha! I have you now!"

Is that so?

"Yes, you've given your whole game away!"

Do tell.

"You visualize a subjunctive world, a counterfactual, where your brain is struck by neutrinos, and says, '2 + 3 = 6'. So you know that in this case, your future self will

saythat '2 + 3 = 6'. But then you add up dots in yourown, current brain,and yourcurrentself gets five dots. So you say: 'Even if I believed "2 + 3 = 6", then 2 + 3 would still equal 5.' You say: '2 + 3 = 5 regardless of what anyone thinks of it.' So yourcurrentbrain, computing the same question while itimaginesbeing different but is notactuallydifferent, finds that the answerseems to be the same. Thus your brain creates theillusionof an additional reality that exists outside it, independent of any brain."Now hold on! You've

explainedmy belief that 2 + 3 = 5 regardless of what anyone thinks, but that's not the same as explaining away my belief. Since 2 + 3 = 5 does not,in fact, depend on what any human being thinks of it, therefore it isright and properthat when I imagine counterfactual worlds in which people (including myself)think'2 + 3 = 6', and I ask what 2 + 3actuallyequals in this counterfactual world, it still comes out as 5."Don't you see, that's just like trying to visualize motion stopping everywhere in the universe, by imagining yourself as an observer outside the universe who experiences time passing while nothing moves. But really there is no time without motion."

I see the analogy, but I'm not sure it's a deep analogy. Not everything you can imagine seeing, doesn't exist. It seems to me that a brain can

easilycompute quantities that don't depend on the brain."

What?Ofcourseeverything that the brain computes depends on the brain! Everything that the brain computes, is computed inside the brain!"That's not what I mean! I just mean that the brain can perform computations that

refer toquantities outside the brain. You can set up a question, like 'How many sheep are in the field?', that isn'taboutany particular person's brain, and whoseactualanswer doesn'tdepend onany particular person's brain. And then a brain can faithfully compute that answer.If I count two sheep and three sheep returning from the field, and Autrey's brain gets hit by neutrinos so that Autrey thinks there are six sheep in the fold, then that's not going to

causethere to be six sheep in the fold—right? The whole question here is justnot aboutwhat Autrey thinks, it'sabouthow many sheep are in the fold.Why should I care what

mysubjunctive future self thinks is the sum of 2 + 3, any more than I care whatAutreythinks is the sum of 2 + 3, when it comes to asking what isreallythe sum of 2 + 3?"Okay... I'll take another tack. Suppose you're a psychiatrist, right? And you're an expert witness in court cases—basically a hired gun, but you try to deceive yourself about it. Now wouldn't it be a bit suspicious, to find yourself saying: 'Well, the only reason

that I in fact believethat the defendant is insane, is because I was paid to be an expert psychiatric witness for the defense. And if I had been paid to witness for the prosecution, I undoubtedly would have come to the conclusion that the defendant is sane. But my belief that the defendant is insane, isperfectly justified;it is justified by my observation that the defendant used his own blood to paint an Elder Sign on the wall of his jail cell.'"Yes, that

doessound suspicious, but I don't see the point."My point is that the

physical causeof your belief that 2 + 3 = 5, is the physical event of your brain visualizing two dots and three dots and coming up with five dots. If your brain came up six dots, due to a neutrino storm or whatever, you'd think '2 + 3 = 6'. How can you possibly say that your beliefmeansanything other than the number of dots your brain came up with?"Now hold on just a second. Let's say that the psychiatrist is paid by the judge, and when he's paid by the judge, he renders an honest and neutral evaluation, and his evaluation is that the defendant is sane, just played a bit too much Mythos. So it is true to say that if the psychiatrist had been paid by the defense, then the psychiatrist would have found the defendant to be insane. But that doesn't mean that when the psychiatrist is paid by the

judge,you should dismiss his evaluation as telling younothing more than'the psychiatrist was paid by the judge'. On those occasions where the psychiatristispaid by the judge, his opinion varies with the defendant, and conveys real evidence about the defendant."Okay, so now what's y

ourpoint?"That when my brain is

notbeing hit by a neutrino storm, it yields honest and informative evidence that 2 + 3 = 5."And if your brain

washit by a neutrino storm, you'd be saying, '2 + 3 = 6 regardless of what anyone thinks of it'. Which shows how reliablethatline of reasoning is."I'm not claiming that my saying '2 + 3 = 5 no matter what anyone thinks' represents stronger

numericalevidence than my saying '2 + 3 = 5'. My saying the former just tells you something extra about my epistemology, not numbers."And you don't think your epistemology is, oh, a little...

incoherent?"No! I think it is perfectly coherent to simultaneously hold all of the following:

currentmind, when it subjunctively recomputes the value of 2 + 3 under the assumption that myimaginedself is hit by neutrinos, does not see theimaginedself's beliefs as changing the dots, and mycurrentbrain just visualizes two dots plus three dots, as before, so that the imagination of mycurrentbrain shows the same result.actuallyhit by neutrinos, my brain would compute a different result, and I would assert "2 + 3 = 6 independently of what anyone thinks."in factgo on equaling 5regardlessof what I imagine about it or how my brain visualizes cases where my future self has different beliefs, it's agood thingthat my imagination doesn't visualize the result as depending on my beliefs."Now that's just crazy talk!"

No,

you'rethe crazy one! You'recollapsing your levels; you think that just because my brain asks a question, it should start mixing up queries about the state of my brainintothe question. Not every question my brain asks isaboutmy brain!Just because something is computed

inmy brain, doesn't mean that my computation has to depend on my brain'srepresentation ofmy brain. It certainly doesn't mean that theactual quantitydepends on my brain! It's my brain that computes my beliefs about gravity, and if neutrinos hit me I will come to a different conclusion; but that doesn't mean that I can think different and fly. And I don'tthinkI can think different and fly, either!I am not a calculator who, when someone presses my "2" and "+" and "3" buttons, computes, "What do I output when someone presses 2 + 3?" I am a calculator who computes "What is 2 + 3?" The former is a circular question that can consistently return any answer—which makes it not very

helpful.Shouldn't we expect non-circular questions to be the

normalcase? The brain evolved to guess at the state of the environment, not guess at 'what the brain will think is the state of the environment'. Even when the brain models itself, it is trying toknow itself, not trying to knowwhat it will think about itself.Judgments that depend on our representations of

anyone'sstate of mind, like "It's okay to kiss someone only if they want to be kissed", are the exception rather than the rule.Mostquantities we bother to think about at all, will appear to be 'the same regardless of what anyone thinks of them'. When we imagine thinking differently about the quantity, we will imagine the quantity coming out the same; it will feel "subjunctively objective".And there's nothing wrong with that! If something

appearsto be the same regardless of what anyone thinks, then maybe that's because itactually isthe same regardless of what anyone thinks.Even if you explain that the quantity

appearsto stay the same in my imagination,merelybecause my current brain computes it the same way—well, howelsewould I imagine something,exceptwith my current brain? Should I imagine it using a rock?"Okay, so it's possible for something that appears thought-independent, to actually be thought-independent. But why do you think that 2 + 3 = 5, in particular, has some kind of existence independently of the dots you imagine?"

Because two sheep plus three sheep equals five sheep, and this appears to be true in every mountain and every island, every swamp and every plain and every forest.

And moreover, it is also true of two rocks plus three rocks.

And further, when I press buttons upon a calculator and activate a network of transistors, it

successfully predictshow many sheep or rocks I will find.Since all these quantities, correlate with each other and successfully predict each other, surely they must have something

likea common cause, a similarity that factors out? Something that is true beyond and before the concrete observations? Something that the concrete observations hold in common? And this commonality is then also the sponsor of my answer, 'five', that I find in my own brain."But my dear sir, if the fact of 2 + 3 = 5 exists somewhere outside your brain...

then where is it?"Damned if I know.

Part of

The Metaethics SequenceNext post: "Does Your Morality Care What You Think?"

Previous post: "Can Counterfactuals Be True?"