AlphaFold 2 takes an amino acid sequence as input, and outputs a 3D structure which represents the protein that that sequence forms. It would be cool if we could do it in reverse, i.e. the user inputs a 3D model (e.g. a gear, an axle, a wall with a hole in it of a certain shape...) and then the system outputs an amino acid sequence that would form a protein with that structure.
I don't have a good sense of whether this is a very difficult problem that we are nowhere near solving, or an obvious next step after AlphaFold2.
My current median is that it's 4 years away, but I'm very uncertain about that.
But is AlphaFold2(x) a (mostly) convex function? More importantly, is the real structure(x) convex?
I can see a potential bias here, in that AlphaFold and inverse AlphaFold might work well for biomolecules because evolution is also a kind of local search, so if it can find a certain solution, AlphaFold will find it, too. But both processes will be blind to a vast design space that might contain extremely useful designs.
Then again, we are biology, so maybe we only care about biomolecules and adjacent synthetic molecules anyway.