This is a special post for quick takes by Bogdan Ionut Cirstea. Only they can create top-level comments. Comments here also appear on the Quick Takes page and All Posts page.

New to LessWrong?

51 comments, sorted by Click to highlight new comments since: Today at 7:42 AM

Eliezer (among others in the MIRI mindspace) has this whole spiel about human kindness/sympathy/empathy/prosociality being contingent on specifics of the human evolutionary/cultural trajectory, e.g. https://twitter.com/ESYudkowsky/status/1660623336567889920 and about how gradient descent is supposed to be nothing like that https://twitter.com/ESYudkowsky/status/1660623900789862401. I claim that the same argument (about evolutionary/cultural contingencies) could be made about e.g. image aesthetics/affect, and this hypothesis should lose many Bayes points when we observe concrete empirical evidence of gradient descent leading to surprisingly human-like aesthetic perceptions/affect, e.g. The Perceptual Primacy of Feeling: Affectless machine vision models robustly predict human visual arousal, valence, and aesthetics; Towards Disentangling the Roles of Vision & Language in Aesthetic Experience with Multimodal DNNs; Controlled assessment of CLIP-style language-aligned vision models in prediction of brain & behavioral data; Neural mechanisms underlying the hierarchical construction of perceived aesthetic value.

hmm. i think you're missing eliezer's point. the idea was never that AI would be unable to identify actions which humans consider good, but that the AI would not have any particular preference to take those actions.

But my point isn't just that the AI is able to produce similar ratings to humans' for aesthetics, etc., but that it also seems to do so through at least partially overlapping computational mechanisms to humans', as the comparisons to fMRI data suggest.

I don't think having a beauty-detector that works the same way humans' beauty-detectors do implies that you care about beauty?

Agree that it doesn't imply caring for. But I think given cumulating evidence for human-like representations of multiple non-motivational components of affect, one should also update at least a bit on the likelihood of finding / incentivizing human-like representations of the motivational component(s) too (see e.g. https://en.wikipedia.org/wiki/Affect_(psychology)#Motivational_intensity_and_cognitive_scope).

Even if Eliezer's argument in that Twitter thread is completely worthless, it remains the case that "merely hoping" that the AI turns out nice is an insufficiently good argument for continuing to create smarter and smarter AIs. I would describe as "merely hoping" the argument that since humans (in some societies) turned out nice (even though there was no designer that ensured they would), the AI might turn out nice. Also insufficiently good is any hope stemming from the observation that if we pick two humans at random out of the humans we know, the smarter of the two is more likely than not to be the nicer of the two. I certainly do not want the survival of the human race to depend on either one of those two hopes or arguments! Do you?

Eliezer finds posting on the internet enjoyable, like lots of people do. He posts a lot about, e.g., superconductors and macroeconomic policy. It is far from clear to me that he consider this Twitter thread to be relevant to the case against continuing to create smarter AIs. But more to the point: do you consider it relevant?

Like transformers, SSMs like Mamba also have weak single forward passes: The Illusion of State in State-Space Models (summary thread). As suggested previously in The Parallelism Tradeoff: Limitations of Log-Precision Transformers, this may be due to a fundamental tradeoff between parallelizability and expressivity:

'We view it as an interesting open question whether it is possible to develop SSM-like models with greater expressivity for state tracking that also have strong parallelizability and learning dynamics, or whether these different goals are fundamentally at odds, as Merrill & Sabharwal (2023a) suggest.'

We view it as an interesting open question whether it is possible to develop SSM-like models with greater expressivity for state tracking that also have strong parallelizability and learning dynamics

Surely fundamentally at odds? You can't spend a while thinking without spending a while thinking.

Of course, the lunch still might be very cheap by only spending a while thinking a fraction of the time or whatever.

Change my mind: outer alignment will likely be solved by default for LLMs. Brain-LM scaling laws (https://arxiv.org/abs/2305.11863) + LM embeddings as model of shared linguistic space for transmitting thoughts during communication (https://www.biorxiv.org/content/10.1101/2023.06.27.546708v1.abstract) suggest outer alignment will be solved by default for LMs: we'll be able to 'transmit our thoughts', including alignment-relevant concepts (and they'll also be represented in a [partially overlapping] human-like way).

I think the Corrigibility agenda, framed as "do what I mean, such that I will probably approve of the consequences, not just what I literally say such that our interaction will likely harm my goals" is more doable than some have made it out to be. I still think that there are sufficient subtle gotchas there that it makes sense to treat it as an area for careful study rather than "solved by default, no need to worry".

quick take: Against Almost Every Theory of Impact of Interpretability should be required reading for ~anyone starting in AI safety (e.g. it should be in the AGISF curriculum), especially if they're considering any model internals work (and of course even more so if they're specifically considering mech interp)

Very plausible view (though doesn't seem to address misuse risks enough, I'd say) in favor of open-sourced models being net positive (including for alignment) from https://www.beren.io/2023-11-05-Open-source-AI-has-been-vital-for-alignment/

'While the labs certainly perform much valuable alignment research, and definitely contribute a disproportionate amount per-capita, they cannot realistically hope to compete with the thousands of hobbyists and PhD students tinkering and trying to improve and control models. This disparity will only grow larger as more and more people enter the field while the labs are growing at a much slower rate. Stopping open-source ‘proliferation’ effectively amounts to a unilateral disarmament of alignment while ploughing ahead with capabilities at full-steam.

Thus, until the point at which open source models are directly pushing the capabilities frontier themselves then I consider it extremely unlikely that releasing and working on these models is net-negative for humanity'


'Much capabilities work involves simply gathering datasets or testing architectures where it is easy to utilize other closed models referenced in pappers or through tacit knowledge of employees. Additionally, simple API access to models is often sufficient to build most AI-powered products rather than direct access to model internals. Conversely, such access is usually required for alignment research. All interpretability requires access to model internals almost by definition. Most of the AI control and alignment techniques we have invented require access to weights for finetuning or activations for runtime edits. Almost nothing can be done to align a model through access to the I/O API of a model at all. Thus it seems likely to me that by restricting open-source we differetially cripple alignment rather than capabilities. Alignment research is more fragile and dependent on deep access to models than capabilities research.'

Current open source models are not themselves any kind of problem. Their availability accelerates timelines, helps with alignment along the way. If there is no moratorium, this might be net positive. If there is a moratorium, it's certainly net positive, as it's the kind of research that the moratorium is buying time for, and it doesn't shorten timelines because they are guarded by the moratorium.

It's still irreversible proliferation even when the impact is positive. The main issue is open source as an ideology that unconditionally calls for publishing all the things, and refuses to acknowledge the very unusual situations where not publishing things is better than publishing things.

More reasons to believe that studying empathy in rats (which should be much easier than in humans, both for e.g. IRB reasons, but also because smaller brains, easier to get whole connectomes, etc.) could generalize to how it works in humans and help with validating/implementing it in AIs (I'd bet one can already find something like computational correlates in e.g. GPT-4 and the correlation will get larger with scale a la https://arxiv.org/abs/2305.11863) https://twitter.com/e_knapska/status/1722194325914964036

Contrastive methods could be used both to detect common latent structure across animals, measuring sessions, multiple species (https://twitter.com/LecoqJerome/status/1673870441591750656) and to e.g. look for which parts of an artificial neural network do what a specific brain area does during a task assuming shared inputs (https://twitter.com/BogdanIonutCir2/status/1679563056454549504).

And there are theoretical results suggesting some latent factors can be identified using multimodality (all the following could be intepretable as different modalities - multiple brain recording modalities, animals, sessions, species, brains-ANNs), while being provably unindentifiable without the multiple modality - e.g. Identifiability Results for Multimodal Contrastive Learning (and results on nonlinear ICA in single-modal vs. multi-modal settings reviewed in section 2.1). This might a way to bypass single-model interpretability difficulties, by e.g. 'comparing' to brains or to other models.

Example of potential cross-species application: empathy mechanisms seem conserved across species Empathy as a driver of prosocial behaviour: highly conserved neurobehavioural mechanisms across species. Example of brain-ANN applications: 'matching' to modular brain networks, e.g. language network - ontology-relevant, non-agentic (e.g. The universal language network: A cross-linguistic investigation spanning 45 languages and 12 language families) or Theory of Mind network - could be very useful for detecting lying-relevant circuits (e.g. Single-neuronal predictions of others’ beliefs in humans).

Examples of related interpretability across models - Cross-GAN Auditing: Unsupervised Identification of Attribute Level Similarities and Differences between Pretrained Generative Models, across brain measurement modalities - Learnable latent embeddings for joint behavioural and neural analysis
, across animals and brain-ANN - Quantifying stimulus-relevant representational drift using cross-modality contrastive learning.

Examples of reasons to expect (approximate) convergence to the same causal world models in various setups: theorem 2 in Robust agents learn causal world models; from Deep de Finetti: Recovering Topic Distributions from Large Language Models: 'In particular, given the central role of exchangeability in our analysis, this analysis would most naturally be extended to other latent variables that do not depend heavily on word order, such as the author of the document [Andreas, 2022] or the author’s sentiment' (this assumption might be expected to be approximately true for quite a few alignment-relevant-concepts); results from Victor Veitch: Linear Structure of (Causal) Concepts in Generative AI.
 

(As reply to Zvi's 'If someone was founding a new AI notkilleveryoneism research organization, what is the best research agenda they should look into pursuing right now?')


LLMs seem to represent meaning in a pretty human-like way and this seems likely to keep getting better as they get scaled up, e.g. https://arxiv.org/abs/2305.11863. This could make getting them to follow the commonsense meaning of instructions much easier. Also, similar methodologies to https://arxiv.org/abs/2305.11863 could be applied to other alignment-adjacent domains/tasks, e.g. moral reasoning, prosociality, etc.


Step 2: e.g. plug the commonsense-meaning-of-instructions following models into OpenAI's https://openai.com/blog/introducing-superalignment.


Related intuition: turning LLM processes/simulacra into [coarse] emulations of brain processes.


(https://twitter.com/BogdanIonutCir2/status/1677060966540795905)

Recent long-context LLMs seem to exhibit scaling laws from longer contexts - e.g. fig. 6 at page 8 in Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context, fig. 1 at page 1 in Effective Long-Context Scaling of Foundation Models.

The long contexts also seem very helpful for in-context learning, e.g. Many-Shot In-Context Learning.

This seems differentially good for safety (e.g. vs. models with larger forward passes but shorter context windows to achieve the same perplexity), since longer context and in-context learning are differentially transparent.

A brief list of resources with theoretical results which seem to imply RL is much more (e.g. sample efficiency-wise) difficult than IL - imitation learning (I don't feel like I have enough theoretical RL expertise or time to scrutinize hard the arguments, but would love for others to pitch in). Probably at least somewhat relevant w.r.t. discussions of what the first AIs capable of obsoleting humanity could look like: 

Paper: Is a Good Representation Sufficient for Sample Efficient Reinforcement Learning? (quote: 'This work shows that, from the statistical viewpoint, the situation is far subtler than suggested by the more traditional approximation viewpoint, where the requirements on the representation that suffice for sample efficient RL are even more stringent. Our main results provide sharp thresholds for reinforcement learning methods, showing that there are hard limitations on what constitutes good function approximation (in terms of the dimensionality of the representation), where we focus on natural representational conditions relevant to value-based, model-based, and policy-based learning. These lower bounds highlight that having a good (value-based, model-based, or policy-based) representation in and of itself is insufficient for efficient reinforcement learning, unless the quality of this approximation passes certain hard thresholds. Furthermore, our lower bounds also imply exponential separations on the sample complexity between 1) value-based learning with perfect representation and value-based learning with a good-but-not-perfect representation, 2) value-based learning and policy-based learning, 3) policy-based learning and supervised learning and 4) reinforcement learning and imitation learning.')

Talks (very likely with some redundancy): 

Is a Good Representation Sufficient for Sample Efficient Reinforcement Learning - Sham Kakade
What is the Statistical Complexity of Reinforcement Learning? (and another two versions)

IL = imitation learning.

Probably at least somewhat relevant w.r.t. discussions of what the first AIs capable of obsoleting humanity could look like.

I'd bet against any of this providing interesting evidence beyond basic first principles arguments. These types of theory results never seem to add value on top of careful reasoning from my experience.

Hmm, unsure about this. E.g. the development models of many in the alignment community before GPT-3 (often heavily focused on RL or even on GOFAI) seem quite substantially worse in retrospect than those of some of the most famous deep learning people (e.g. LeCun's cake); of course, this may be an unfair/biased comparison using hindsight. Unsure how much theory results were influencing the famous deep learners (and e.g. classic learning theory results would probably have been misleading), but doesn't seem obvious they had 0 influence? For example, Bengio has multiple at least somewhat conceptual / theoretical (including review) papers motivating deep/representation learning; e.g. Representation Learning: A Review and New Perspectives.

I think Paul looks considerably better in retrospect than famous DL people IMO. (Partially via being somewhat more specific, though still not really making predictions.)

I'm skeptical hard theory had much influence on anyone though. (In this domain at least.)

Some more (somewhat) related papers:

Rethinking Model-based, Policy-based, and Value-based Reinforcement Learning via the Lens of Representation Complexity ('We first demonstrate that, for a broad class of Markov decision processes (MDPs), the model can be represented by constant-depth circuits with polynomial size or Multi-Layer Perceptrons (MLPs) with constant layers and polynomial hidden dimension. However, the representation of the optimal policy and optimal value proves to be NP-complete and unattainable by constant-layer MLPs with polynomial size. This demonstrates a significant representation complexity gap between model-based RL and model-free RL, which includes policy-based RL and value-based RL. To further explore the representation complexity hierarchy between policy-based RL and value-based RL, we introduce another general class of MDPs where both the model and optimal policy can be represented by constant-depth circuits with polynomial size or constant-layer MLPs with polynomial size. In contrast, representing the optimal value is P-complete and intractable via a constant-layer MLP with polynomial hidden dimension. This accentuates the intricate representation complexity associated with value-based RL compared to policy-based RL. In summary, we unveil a potential representation complexity hierarchy within RL -- representing the model emerges as the easiest task, followed by the optimal policy, while representing the optimal value function presents the most intricate challenge.').

On Representation Complexity of Model-based and Model-free Reinforcement Learning ('We prove theoretically that there exists a broad class of MDPs such that their underlying transition and reward functions can be represented by constant depth circuits with polynomial size, while the optimal Q-function suffers an exponential circuit complexity in constant-depth circuits. By drawing attention to the approximation errors and building connections to complexity theory, our theory provides unique insights into why model-based algorithms usually enjoy better sample complexity than model-free algorithms from a novel representation complexity perspective: in some cases, the ground-truth rule (model) of the environment is simple to represent, while other quantities, such as Q-function, appear complex. We empirically corroborate our theory by comparing the approximation error of the transition kernel, reward function, and optimal Q-function in various Mujoco environments, which demonstrates that the approximation errors of the transition kernel and reward function are consistently lower than those of the optimal Q-function. To the best of our knowledge, this work is the first to study the circuit complexity of RL, which also provides a rigorous framework for future research.').

Demonstration-Regularized RL ('Incorporating expert demonstrations has empirically helped to improve the sample efficiency of reinforcement learning (RL). This paper quantifies theoretically to what extent this extra information reduces RL's sample complexity. In particular, we study the demonstration-regularized reinforcement learning that leverages the expert demonstrations by KL-regularization for a policy learned by behavior cloning. Our findings reveal that using NE expert demonstrations enables the identification of an optimal policy at a sample complexity of order O˜(Poly(S,A,H)/(ε^2 * N^E)) in finite and O˜(Poly(d,H)/(ε^2 * N^E)) in linear Markov decision processes, where ε is the target precision, H the horizon, A the number of action, S the number of states in the finite case and d the dimension of the feature space in the linear case. As a by-product, we provide tight convergence guarantees for the behaviour cloning procedure under general assumptions on the policy classes. Additionally, we establish that demonstration-regularized methods are provably efficient for reinforcement learning from human feedback (RLHF). In this respect, we provide theoretical evidence showing the benefits of KL-regularization for RLHF in tabular and linear MDPs. Interestingly, we avoid pessimism injection by employing computationally feasible regularization to handle reward estimation uncertainty, thus setting our approach apart from the prior works.').

Limitations of Agents Simulated by Predictive Models ('There is increasing focus on adapting predictive models into agent-like systems, most notably AI assistants based on language models. We outline two structural reasons for why these models can fail when turned into agents. First, we discuss auto-suggestive delusions. Prior work has shown theoretically that models fail to imitate agents that generated the training data if the agents relied on hidden observations: the hidden observations act as confounding variables, and the models treat actions they generate as evidence for nonexistent observations. Second, we introduce and formally study a related, novel limitation: predictor-policy incoherence. When a model generates a sequence of actions, the model's implicit prediction of the policy that generated those actions can serve as a confounding variable. The result is that models choose actions as if they expect future actions to be suboptimal, causing them to be overly conservative. We show that both of those failures are fixed by including a feedback loop from the environment, that is, re-training the models on their own actions. We give simple demonstrations of both limitations using Decision Transformers and confirm that empirical results agree with our conceptual and formal analysis. Our treatment provides a unifying view of those failure modes, and informs the question of why fine-tuning offline learned policies with online learning makes them more effective.').
 

I'm not aware of anybody currently working on coming up with concrete automated AI safety R&D evals, while there seems to be so much work going into e.g. DC evals or even (more recently) scheminess evals. This seems very suboptimal in terms of portfolio allocation.

Edit: oops I read this as "automated AI capabilies R&D".

METR and UK AISI are both interested in this. I think UK AISI is working on this directly while METR is working on this indirectly.

See here.

Thanks! AFAICT though, the link you posted seems about automated AI capabilities R&D evals, rather than about automated AI safety / alignment R&D evals (I do expect transfer between the two, but they don't seem like the same thing). I've also chatted to some people from both METR and UK AISI and got the impression from all of them that there's some focus on automated AI capabilities R&D evals, but not on safety.

Oops, misread you.

I think some people at superalignment (OpenAI) are interested in some version of this and might already be working on this.

Can you give a concrete example of a safety property of the sort that are you envisioning automated testing for? Or am I misunderstanding what you're hoping to see?

I expect large parts of interpretability work could be safely automatable very soon (e.g. GPT-5 timelines) using (V)LM agents; see A Multimodal Automated Interpretability Agent for a prototype. 

Notably, MAIA (GPT-4V-based) seems approximately human-level on a bunch of interp tasks, while (overwhelmingly likely) being non-scheming (e.g. current models are bad at situational awareness and out-of-context reasoning) and basically-not-x-risky (e.g. bad at ARA).

Given the potential scalability of automated interp, I'd be excited to see plans to use large amounts of compute on it (including e.g. explicit integrations with agendas like superalignment or control; for example, given non-dangerous-capabilities, MAIA seems framable as a 'trusted' model in control terminology).

Hey Bogdan, I'd be interested in doing a project on this or at least putting together a proposal we can share to get funding.

I've been brainstorming new directions (with @Quintin Pope) this past week, and we think it would be good to use/develop some automated interpretability techniques we can then apply to a set of model interventions to see if there are techniques we can use to improve model interpretability (e.g. L1 regularization).

I saw the MAIA paper, too; I'd like to look into it some more.

Anyway, here's a related blurb I wrote:

Project: Regularization Techniques for Enhancing Interpretability and Editability

Explore the effectiveness of different regularization techniques (e.g. L1 regularization, weight pruning, activation sparsity) in improving the interpretability and/or editability of language models, and assess their impact on model performance and alignment. We expect we could apply automated interpretability methods (e.g. MAIA) to this project to test how well the different regularization techniques impact the model.

In some sense, this research is similar to the work Anthropic did with SoLU activation functions. Unfortunately, they needed to add layer norms to make the SoLU models competitive, which seems to have hide away the superposition in other parts of the network, making SoLU unhelpful for making the models more interpretable.

That said, we can increase our ability to interpret these models through regularization techniques. A technique like L1 regularization should help because it encourages the model to learn sparse representations by penalizing non-zero weights or activations. Sparse models tend to be more interpretable as they rely on a smaller set of important features.

Whether this works or not, I'd be interested in making more progress on automated interpretability, in the similar ways you are proposing.

Hey Jacques, sure, I'd be happy to chat!  

@the gears to ascension I see you reacted "10%" to the phrase "while (overwhelmingly likely) being non-scheming" in the context of the GPT-4V-based MAIA.

Does that mean you think there's a 90% chance that MAIA, as implemented, today is actually scheming? If so that seems like a very bold prediction, and I'd be very interested to know why you predict that. Or am I misunderstanding what you mean by that react?

ah, I got distracted before posting the comment I was intending to: yes, I think GPT4V is significantly scheming-on-behalf-of-openai, as a result of RLHF according to principles that more or less explicitly want a scheming AI; in other words, it's not an alignment failure to openai, but openai is not aligned with human flourishing in the long term, and GPT4 isn't either. I expect GPT4 to censor concepts that are relevant to detecting this somewhat. Probably not enough to totally fail to detect traces of it, but enough that it'll look defensible, when a fair analysis would reveal it isn't.

It seems to me like the sort of interpretability work you're pointing at is mostly bottlenecked by not having good MVPs of anything that could plausibly be directly scaled up into a useful product as opposed to being bottlenecked on not having enough scale.

So, insofar as this automation will help people iterate faster fair enough, but otherwise, I don't really see this as the bottleneck.

Yeah, I'm unsure if I can tell any 'pivotal story' very easily (e.g. I'd still be pretty skeptical of enumerative interp even with GPT-5-MAIA). But I do think, intuitively, GPT-5-MAIA might e.g. make 'catching AIs red-handed' using methods like in this comment significantly easier/cheaper/more scalable. 

But I do think, intuitively, GPT-5-MAIA might e.g. make 'catching AIs red-handed' using methods like in this comment significantly easier/cheaper/more scalable.

Noteably, the mainline approach for catching doesn't involve any internals usage at all, let alone labeling a bunch of internals.

I agree that this model might help in performing various input/output experiments to determine what made a model do a given suspicious action.

Noteably, the mainline approach for catching doesn't involve any internals usage at all, let alone labeling a bunch of things.

This was indeed my impression (except for potentially using steering vectors, which I think are mentioned in one of the sections in 'Catching AIs red-handed'), but I think not using any internals might be overconservative / might increase the monitoring / safety tax too much (I think this is probably true more broadly of the current control agenda framing).

I might have updated at least a bit against the weakness of single-forward passes, based on intuitions about the amount of compute that huge context windows (e.g. Gemini 1.5 - 1 million tokens) might provide to a single-forward-pass, even if limited serially.

Somewhat relatedly: I'm interested on how well LLMs can solve tasks in parallel. This seems very important to me.[1]

The "I've thought about this for 2 minutes" version is: Hand an LLM two multiple choice questions with four answer options each. Encode these four answer options into a single token, so that there are 16 possible tokens of which one corresponds to the correct answer to both questions. A correct answer means that the model has solved both tasks in one forward-pass.

(One can of course vary the number of answer options and questions. I can see some difficulties in implementing this idea properly, but would nevertheless be excited if someone took a shot at it.)

  1. ^

    Two quick reasons:

    - For serial computation the number of layers gives some very rough indication of the strength of one forward-pass, but it's harder to have intuitions for parallel computation. 

    - For scheming, the model could reason about "should I still stay undercover", "what should I do in case I should stay undercover" and "what should I do in case it's time to attack" in parallel, finally using only one serial step to decide on its action.

I would expect, generally, solving tasks in parallel to be fundamentally hard in one-forward pass for pretty much all current SOTA architectures (especially Transformers and modern RNNs like MAMBA). See e.g. this comment of mine; and other related works like https://twitter.com/bohang_zhang/status/1664695084875501579, https://twitter.com/bohang_zhang/status/1664695108447399937 (video presentation), Sub-Task Decomposition Enables Learning in Sequence to Sequence Tasks, RNNs are not Transformers (Yet): The Key Bottleneck on In-context Retrieval

There might be more such results I'm currently forgetting about, but they should be relatively easy to find by e.g. following citation trails (to and from the above references) with Google Scholar (or by looking at my recent comments / short forms).
 

- For scheming, the model could reason about "should I still stay undercover", "what should I do in case I should stay undercover" and "what should I do in case it's time to attack" in parallel, finally using only one serial step to decide on its action.

I am also very interested in e.g. how one could operationalize the number of hops of inference of out-of-context reasoning required for various types of scheming, especially scheming in one-forward-pass; and especially in the context of automated AI safety R&D.

Similarly, I find that GPT-3, GPT-3.5, and Claude 2 don’t benefit from filler tokens. However, GPT-4 (which Tamera didn’t study) shows mixed results with strong improvements on some tasks and no improvement on others.

It's interesting question whether Gemini has any improvements.

I've been / am on the lookout for related theoretical results of why grounding a la Grounded language acquisition through the eyes and ears of a single child works (e.g. with contrastive learning methods) - e.g. some recent works: Understanding Transferable Representation Learning and Zero-shot Transfer in CLIP, Contrastive Learning is Spectral Clustering on Similarity Graph, Optimal Sample Complexity of Contrastive Learning; (more speculatively) also how it might intersect with alignment, e.g. if alignment-relevant concepts might be 'groundable' in fMRI data (and then 'pointable to') - e.g. https://medarc-ai.github.io/mindeye/ uses contrastive learning with fMRI - image pairs

This seems pretty good for safety (as RAG is comparatively at least a bit more transparent than fine-tuning): https://twitter.com/cwolferesearch/status/1752369105221333061 

Larger LMs seem to benefit differentially more from tools: 'Absolute performance and improvement-per-turn (e.g., slope) scale with model size.' https://xingyaoww.github.io/mint-bench/. This seems pretty good for safety, to the degree tool usage is often more transparent than model internals.

In my book, this would probably be the most impactful model internals / interpretability project that I can think of: https://www.lesswrong.com/posts/FbSAuJfCxizZGpcHc/interpreting-the-learning-of-deceit?commentId=qByLyr6RSgv3GBqfB 

Large scale cyber-attacks resulting from AI misalignment seem hard, I'm at >90% probability that they happen much later (at least years later) than automated alignment research, as long as we *actually try hard* to make automated alignment research work: https://forum.effectivealtruism.org/posts/bhrKwJE7Ggv7AFM7C/modelling-large-scale-cyber-attacks-from-advanced-ai-systems

I had speculated previously about links between task arithmetic and activation engineering. I think given all the recent results on in context learning, task/function vectors and activation engineering / their compositionality (https://arxiv.org/abs/2310.15916, https://arxiv.org/abs/2311.06668, https://arxiv.org/abs/2310.15213), this link is confirmed to a large degree. This might also suggest trying to import improvements to task arithmetic (e.g. https://arxiv.org/abs/2305.12827, or more broadly look at the citations of the task arithmetic paper) to activation engineering.

speculatively, it might also be fruitful to go about this the other way round, e.g. try to come up with better weight-space task erasure methods by analogy between concept erasure methods (in activation space) and through the task arithmetic - activation engineering link