Followup toLogical PinpointingCausal Reference

Take the universe and grind it down to the finest powder and sieve it through the finest sieve and then show me one atom of justice, one molecule of mercy.

- Death, in Hogfather by Terry Pratchett

Meditation: So far we've talked about two kinds of meaningfulness and two ways that sentences can refer; a way of comparing to physical things found by following pinned-down causal links, and logical validity by comparison to models pinned-down by axioms. Is there anything else that can be meaningfully talked about? Where would you find justice, or mercy?

... 
... 
...

Suppose that I pointed at a couple of piles of apples on a table, a pile of two apples and a pile of three apples.

And lo, I said:  "If we took the number of apples in each pile, and multiplied those numbers together, we'd get six."

Nowhere in the physical universe is that 'six' written - there's nowhere in the laws of physics where you'll find a floating six. Even on the table itself there's only five apples, and apples aren't fundamental. Or to put it another way:

Take the apples and grind them down to the finest powder and sieve them through the finest sieve and then show me one atom of sixness, one molecule of multiplication.

Nor can the statement be true as a matter of pure math, comparing to some Platonic six within a mathematical model, because we could physically take one apple off the table and make the statement false, and you can't do that with math.

This question doesn't feel like it should be very hard.  And indeed the answer is not very difficult, but it is worth spelling out; because cases like "justice" or "mercy" will turn out to proceed in a similar fashion.

Navigating to the six requires a mixture of physical and logical reference.  This case begins with a physical reference, when we navigate to the physical apples on the table by talking about the cause of our apple-seeing experiences:

Next we have to call the stuff on the table 'apples'.  But how, oh how can we do this, when grinding the universe and running it through a sieve will reveal not a single particle of appleness?

This part was covered at some length in the Reductionism sequence.  Standard physics uses the same fundamental theory to describe the flight of a Boeing 747 airplane, and collisions in the Relativistic Heavy Ion Collider.  Nuclei and airplanes alike, according to our understanding, are obeying special relativity, quantum mechanics, and chromodynamics.

We also use entirely different models to understand the aerodynamics of a 747 and a collision between gold nuclei in the RHIC.  A computer modeling the aerodynamics of a 747 may not contain a single token, a single bit of RAM, that represents a quark.  (Or a quantum field, really; but you get the idea.)

So is the 747 made of something other than quarks?  And is the statement "this 747 has wings" meaningless or false?  No, we're just modeling the 747 with representational elements that do not have a one-to-one correspondence with individual quarks.

Similarly with apples.  To compare a mental image of high-level apple-objects to physical reality, for it to be true under a correspondence theory of truth, doesn't require that apples be fundamental in physical law.  A single discrete element of fundamental physics is not the only thing that a statement can ever be compared-to.  We just need truth conditions that categorize the low-level states of the universe, so that different low-level physical states are inside or outside the mental image of "some apples on the table" or alternatively "a kitten on the table".

Now we can draw a correspondence from our image of discrete high-level apple objects, to reality.

Next we need to count the apple-objects in each pile, using some procedure along the lines of going from apple to apple, marking those already counted and not counting them a second time, and continuing until all the apples in each heap have been counted.  And then, having counted two numbers, we'll multiply them together.  You can imagine this as taking the physical state of the universe (or a high-level representation of it) and running it through a series of functions leading to a final output:

And of course operations like "counting" and "multiplication" are pinned down by the number-axioms of Peano Arithmetic:

And we shouldn't forget that the image of the table, is being calculated from eyes which are in causal contact with the real table-made-of-particles out there in physical reality:

And then there's also the point that the Peano axioms themselves are being quoted inside your brain in order to pin down the ideal multiplicative result - after all, you can get multiplications wrong - but I'm not going to draw the image for that one.  (We tried, and it came out too crowded.)

So long as the math is pinned down, any table of two apple piles should yield a single output when we run the math over it. Constraining this output constrains the possible states of the original, physical input universe:

And thus "The product of the apple numbers is six" is meaningful, constraining the possible worlds. It has a truth-condition, fulfilled by a mixture of physical reality and logical validity; and the correspondence is nailed down by a mixture of causal reference and axiomatic pinpointing.

I usually simplify this to the idea of "running a logical function over the physical universe", but of course the small picture doesn't work unless the big picture works.


The Great Reductionist Project can be seen as figuring out how to express meaningful sentences in terms of a combination of physical references (statements whose truth-value is determined by a truth-condition directly correspnding to the real universe we're embedded in) and logical references (valid implications of premises, or elements of models pinned down by axioms); where both physical references and logical references are to be described 'effectively' or 'formally', in computable or logical form.  (I haven't had time to go into this last part but it's an already-popular idea in philosophy of computation.)

And the Great Reductionist Thesis can be seen as the proposition that everything meaningful can be expressed this way eventually.

But it sometimes takes a whole bunch of work.

And to notice when somebody has subtly violated the Great Reductionist Thesis - to see when a current solution is not decomposable to physical and logical reference - requires a fair amount of self-sensitization before the transgressions become obvious.


Example:  Counterfactuals.

Consider the following pair of sentences, widely used to introduce the idea of "counterfactual conditioning":

  • (A) If Lee Harvey Oswald didn't shoot John F. Kennedy, someone else did.
  • (B) If Lee Harvey Oswald hadn't shot John F. Kennedy, someone else would've.

The first sentence seems agreeable - John F. Kennedy definitely was shot, historically speaking, so if it wasn't Lee Harvey Oswald it was someone.  On the other hand, unless you believe the Illuminati planned it all, it doesn't seem particularly likely that if Lee Harvey Oswald had been removed from the equation, somebody else would've shot Kennedy instead.

Which is to say that sentence (A) appears true, and sentence (B) appears false.

One of the historical questions about the meaning of causal models - in fact, of causal assertions in general - is, "How does this so-called 'causal' model of yours, differ from asserting a bunch of statistical relations?  Okay, sure, these statistical dependencies have a nice neighborhood-structure, but why not just call them correlations with a nice neighborhood-structure; why use fancy terms like 'cause and effect'?"

And one of the most widely endorsed answers, including nowadays, is that causal models carry an extra meaning because they tell us about counterfactual outcomes, which ordinary statistical models don't.  For example, suppose this is our causal model of how John F. Kennedy got shot:

Kennedy causes Oswald

Roughly this is intended to convey the idea that there are no Illuminati:  Kennedy causes Oswald to shoot him, does not cause anybody else to shoot him, and causes the Moon landing; but once you know that Kennedy was elected, there's no correlation between his probability of causing Oswald to shoot him and his probability of causing anyone else to shoot him.  In particular, there's no Illuminati who monitor Oswald and send another shooter if Oswald fails.

In any case, this diagram also implies that if Oswald hadn't shot Kennedy, nobody else would've, which is modified by a counterfactual surgery a.k.a. the do(.) operator, in which a node is severed from its former parents, set to a particular value, and its descendants then recomputed:

do Oswald=N

 

And so it was claimed that the meaning of the first diagram is embodied in its implicit claim (as made explicit in the second diagram) that "if Oswald hadn't shot Kennedy, nobody else would've".  This statement is true, and if all the other implicit counterfactual statements are also true, the first causal model as a whole is a true causal model.

What's wrong with this picture?

Well... if you're strict about that whole combination-of-physics-and-logic business... the problem is that there are no counterfactual universes for a counterfactual statement to correspond-to.  "There's apples on the table" can be true when the particles in the universe are arranged into a configuration where there's some clumps of organic molecules on the table.  What arrangement of the particles in this universe could directly make true the statement "If Oswald hadn't shot Kennedy, nobody else would've"?  In this universe, Oswald did shoot Kennedy and Kennedy did end up shot.

But it's a subtle sort of thing, to notice when you're trying to establish the truth-condition of a sentence by comparison to counterfactual universes that are not measurable, are never observed, and do not in fact actually exist.

Because our own brains carry out the same sort of 'counterfactual surgery' automatically and natively - so natively that it's embedded in the syntax of language.  We don't say, "What if we perform counterfactual surgery on our models to set 'Oswald shoots Kennedy' to false?"  We say, "What if Oswald hadn't shot Kennedy?"  So there's this counterfactual-supposition operation which our brain does very quickly and invisibly to imagine a hypothetical non-existent universe where Oswald doesn't shoot Kennedy, and our brain very rapidly returns the supposition that Kennedy doesn't get shot, and this seems to be a fact like any other fact; and so why couldn't you just compare the causal model to this fact like any other fact?

And in one sense, "If Oswald hadn't shot Kennedy, nobody else would've" is a fact; it's a mixed reference that starts with the causal model of the actual universe where there are actually no Illuminati, and proceeds from there to the logical operation of counterfactual surgery to yield an answer which, like 'six' for the product of apples on the table, is not actually present anywhere in the universe.  But you can't say that the causal model is true because the counterfactuals are true.  The truth of the counterfactuals has to be calculated from the truth of the causal model, followed by the implications of the counterfactual-surgery axioms.  If the causal model couldn't be 'true' or 'false' on its own, by direct comparison to the actual real universe, there'd be no way for the counterfactuals to be true or false either, since no actual counterfactual universes exist.


So that business of counterfactuals may sound like a relatively obscure example (though it's going to play a large role in decision theory later on, and I expect to revisit it then) but it sets up some even larger points.

For example, the Born probabilities in quantum mechanics seem to talk about a 'degree of realness' that different parts of the configuration space have (proportional to the integral over squared modulus of that 'world').

Could the Born probabilities be basic - could there just be a basic law of physics which just says directly that to find out how likely you are to be in any quantum world, the integral over squared modulus gives you the answer?  And the same law could've just as easily have said that you're likely to find yourself in a world that goes over the integral of modulus to the power 1.99999?

But then we would have 'mixed references' that mixed together three kinds of stuff - the Schrodinger Equation, a deterministic causal equation relating complex amplitudes inside a configuration space; logical validities and models; and a law which assigned fundamental-degree-of-realness a.k.a. magical-reality-fluid.  Meaningful statements would talk about some mixture of physical laws over particle fields in our own universe, logical validities, and degree-of-realness.

This is just the same sort of problem if you say that causal models are meaningful and true relative to a mixture of three kinds of stuff, actual worlds,  logical validities, and counterfactuals, and logical validities.  You're only supposed to have two kinds of stuff.

People who think qualia are fundamental are also trying to build references out of at least three different kinds of stuff: physical laws, logic, and experiences.

Anthropic problems similarly revolve around a mysterious degree-of-realness, since presumably when you make more copies of people, you make their experiences more anticipate-able somehow.  But this doesn't say that anthropic questions are meaningless or incoherent.  It says that since we can only talk about anthropic problems using three kinds of stuff, we haven't finished Doing Reductionism to it yet.  (I have not yet encountered a claim to have finished Reducing anthropics which (a) ends up with only two kinds of stuff and (b) does not seem to imply that I should expect my experiences to dissolve into Boltzmann-brain chaos in the next instant, given that if all this talk of 'degree of realness' is nonsense, there is no way to say that physically-lawful copies of me are more common than Boltzmann brain copies of me.)

Or to take it down a notch, naive theories of free will can be seen as obviously not-completed Reductions when you consider that they now contain physics, logic, and this third sort of thingy called 'choices'.

And - alas - modern philosophy is full of 'new sorts of stuff'; we have modal realism that makes possibility a real sort of thing, and then other philosophers appeal to the truth of statements about conceivability without any attempt to reduce conceivability into some mixture of the actually-physically-real-in-our-universe and logical axioms; and so on, and so on.

But lest you be tempted to think that the correct course is always to just envision a simpler universe without the extra stuff, consider that we do not live in the 'naive un-free universe' in which all our choices are constrained by the malevolent outside hand of physics, leaving us as slaves - reducing choices to physics is not the same as taking a naive model with three kinds of stuff, and deleting all the 'choices' from it.  This is confusing the project of getting the gnomes out of the haunted mine, with trying to unmake the rainbow.  Counterfactual surgery was eventually given a formal and logical definition, but it was a lot of work to get that far - causal models had to be invented first, and before then, people could only wave their hands frantically in the air when asked what it meant for something to be a 'cause'.  The overall moral I'm trying convey is that the Great Reductionist Project is difficult; it's not a matter of just proclaiming that there's no gnomes in the mine, or that rainbows couldn't possibly be 'supernatural'.  There are all sorts of statement that were not originally, or are presently not obviously decomposable into physical law plus logic; but that doesn't mean you just give up immediately.  The Great Reductionist Thesis is that reduction is always possible eventually.  It is nowhere written that it is easy, or that your prior efforts were enough to find a solution if one existed.

Continued next time with justice and mercy (or rather, fairness and goodness).  Because clearly, if we end up with meaningful moral statements, they're not going to correspond to a combination of physics and logic plus morality.


Mainstream status.

Part of the sequence Highly Advanced Epistemology 101 for Beginners

Next post: "By Which It May Be Judged"

Previous post: "Causal Universes"

Mixed Reference: The Great Reductionist Project
New Comment
358 comments, sorted by Click to highlight new comments since:
Some comments are truncated due to high volume. (⌘F to expand all)Change truncation settings
[-]TsviBT280

Not to be obnoxious, but...

You're only supposed to have two kinds of stuff.

Why two?

ETA: I feel like I may have distracted from the thrust of the post. I think the main point was that there really really probably shouldn't be more then two stuffs, which is legit.

Because Tegmark 4 isn't mainstream enough yet to get it down to one.

If there is a way to reduce it to zero or not is one discovery I'm much looking forward to, but there probably isn't. It certainly seems totally impossible, but that only really means "I can't think of a way to do it".

8Eliezer Yudkowsky
It does indeed seem possible that in the long run we'll end up with one kind of stuff, either from the reduction of logic to physics, or the reduction of physics to math. It's also worth noting that my present model does have magical-reality-fluid in it, and it's conceivable that this will end up not being reduced. But the actual argument is something along the lines of, "We got it down to two crisp things, and all the proposals for three don't have the crisp nature of the two."
4MaoShan
That seems to me more like an irreducible string of methods of interpretation. You have physics, whether you like it or not. If you want to understand the physics, you need math. And to use the math, you need logic. Physics itself does not require math or logic. We do, if we want to do anything useful with it. So it's not so much "reducible" as it is "interpretable"--physics is such that turning it into a bunch of numbers and wacky symbols actually makes it more understandable. But to draw from your example, you can't have a physical table with physically infinite apples sitting on it. Yet you can do math with infinities, but all the math in the world won't put more apples on that table. ...and since when is two apples sitting next to each other a pile??
3Eugine_Nier
I think you're going to have better luck figuring out how to make the third thing crisp than reducing it to the first two.
2MrMind
Just as mental gymnastics, what if instead we would be able to reduce physics and logic to magical reality fluid? :) Anyway, for the "logic from physics" camp the work of Valentin Turchin seems interesting (above all "The cybernetic foundation of mathematics"). Also of notice the recent foundational program called "Univalent foundation".
0Eugine_Nier
I don't think you can reduce logic to anything else, since you would need to use logic to perform the reduction.
0MrMind
Well, since nobody have done that yet, we cannot be sure, but for example a reduction of logic to physics could look like this: "for a system built on top of this set of physics laws, this is the set of logical system available to it", which would imply that all the axiomatic system we use are only those accessible via our laws of physics. For an extreme seminal example, Turing machine with infinite time have a very different notion of "effective procedure".
1Eugine_Nier
How would one show the above, or even build up a system on top of physical laws without using logic?
1MrMind
I have (at the moment) no idea. It's clear that such a demonstration needs to use some kind of logic, but I think that doesn't undermine the (possible) reduction: if you show that the (set of) logic available to a system depends on the physical laws, you have shown that our own logic is determined by our own laws. This would entail that (possibly) different laws would have granted us different logics. I'm fascinated for example by the fact that the concept of "second order arithmetical truth" (SOAT) is inacessible by effective finite computation, but there are space-times that allow for infinite computation (and so system inhabiting such a world could possibly grasp effectively SOATs).
0Armok_GoB
I only see one crisp thing and one thing borrowing some of the crispness of the first thing but mostly failing, in your model.
4DanArmak
What would that mean? How do you reduce something to nothing? Or, well, everything to nothing?
-8Peterdjones

This.

EY's made a kind of argument that you should have two kinds of stuff (although I still think the logical pinpointing stuff is a bit weak), but he seems to be proceeding as if he'd shown that that was exhaustive. For all the arguments he's given so far, this third post could have been entitled "Experiences: the Third Kind of Stuff", and it would be consistent with what he's already said.

So yeah, we need an argument for; "You're only supposed to have two kinds of stuff."

3MrMind
I think the whole point of "the great reductionist project" is that we don't really have a sufficiency theorem, so we should treat "no more than two" as an empirical hypothesis and proceed to discover its truth by the methods of science.
3Eugine_Nier
He may be overreacting against a strain in philosophy that seeks to reduce everything to experience. Similar to the way behaviorism was an overreaction against Freud.
-1Shmi
Not third, first. There are only two kinds of stuff, experiences and models. Separating physical models from logical is rather artificial, both are used to explain experiences.
0Rob Bensinger
We only access models via experiences. If you aren't willing to reduce models to experiences, why are you willing to reduce the physical world of apples and automobiles to experiences? You're already asserting a kind of positivistic dualism; I see no reason not to posit a third domain, the physical, to correspond to our concrete experiences, just as you've posited a 'model domain' (cf. Frege's third realm) to correspond to our abstract experiences.
8MixedNuts
Agreed. The number two is ridiculous and can't exist. Once you allow stuff to have a physical kind and a logical kind, what's to stop you from adding other kinds like degree-of-realness and Buddha-nature? OTOH, logical abstractions steadfastly refuse to be reduced to physics. There may be hope for the other way around, a solution to "Why does stuff exist?" that makes the universe somehow necessary. (Egan's "conscious minds find themselves" is cute but implies either chaotic observations or something to get the minds started.) But we can't be very optimistic.
5A1987dM
That's Tegmark's Mathematical Universe Hypothesis, the best explanation I've seen of is Section 8.1 “Something for Nothing” in Good and Real by Gary Drescher.
2TsviBT
For math as mere physics, see Egan's Luminous.
-2Armok_GoB
This problem is already solved, the answer is here: http://arxiv.org/abs/0704.0646
3MixedNuts
I don't get it. Okay, obviously our universe is a mathematical structure, that's why physics works. "All math is real" is seductive, but "All computable math is real, but there are no oracles" is just weird; why would you expect that without experimental evidence of Church-Turing? The idea that since there are twice as many infinite strings containing "1010" than "10100", the former must exist twice as much as the latter nicely explains why our universe is so simple. But I'm not at all convinced that universes like ours with stable observers are simpler than pseudorandom generators that pop out Boltzmann brains.
1Armok_GoB
That all math is "real" in some sense you observe directly any time you do any. The insight is not that math is MORE real than previously thought, but just that there isn't some additional find of realness. Sort of, this is an oversimplification. Also check out: http://lesswrong.com/lw/1zt/the_mathematical_universe_the_map_that_is_the/
4Shmi
That post is a confused jumble of multiple misinterpretations of the word "exist".
2MixedNuts
If all levels of the Turing hierarchy are about as real, it's extremely unlikely our universe is at level zero. Yet Church-Turing looks pretty solid.
0endoself
Combine this with the simulation hypothesis; a universe can only simulate less computationally expensive universes. (Of course this is handwavy and barely an argument, but it's possible something stronger could be constructed along these lines. I do think that much more work needs to be done here.)
0Rob Bensinger
I'm pretty sure Eliezer's approach is the opposite of Tegmark's. For Tegmark, the math is real and our physical world emerges from it, or is an image of part of it. For Eliezer, our world, in all its thick, visceral, spatiotemporal glory, is the Real, and logical, mathematical, counterfactual, moral, mentalizing, essentializing, and otherwise abstract reasoning is a human invention that happens to be useful because its rules are precisely and consistently defined. There's much less urgency to producing a reductive account of mathematical reasoning when you've never reified 'number' in the first place. Of course, that's not to deny that something like Tegmark's view (perhaps a simpler version, Game-of-Life-style or restricted to a very small subset of possibility-space that happens to be causally structured) could be true. But if such a view ends up being true, it will provide a reduction of everything we know to something else; it won't be likely to help at all in reducing high-level human concepts like number or qualia or possibility directly to Something Else. For ordinary reductive purposes, it's physics or bust.
3Eliezer Yudkowsky
Always two there are. No more. No less.
3DaFranker
My best vulgarization, which I hope not to be a rationalization (read: Looking for more evidence that it is!), is that Physical kinds of stuff are about what is, while logical kinds of stuff are about "what they do". If you have one lone particle¹ in an empty universe, there's only the one kind, the physical. The particle is there. Once you have two particles, the physical kind of stuff is about how they are, their description, while the logical stuff is about the axiom "these two particles interact" - and everything that derives from there, such as "how" they interact². I do not see any room for more kinds of stuff that is necessary in order to fully and perfectly simulate all the states of the entire universe where these two particles exist. I also don't see how adding more particles is going to change that in any manner. As per the evidence we have, it seems extremely likely that our own universe is a version of this universe with simply more particles in it. So really, you can reduce it to "one", if you're willing to hyper-reduce the conceptual fundamental "is" to the simple logical "do" - if you posit that a single particle in a separate universe simply does not exist, because the only existence of a particle is its interaction, and therefore interactions are the only thing that do exist. Then the distinction between the physical and logical becomes merely one of levels of abstraction, AFAICT, and can theoretically be done away with. However, the physical-logical two-rule seems to be useful, and the above seems extremely easy to misinterpret or confuse with other things. 1. Defined as whatever is the most fundamentally reduced smallest possible unit of the universe, be that a point in a wave field equation, a quark, or anything else reality runs on. 2. I've read some theories (and thought some of my own) implying that there is no real "how" of interaction, and that all the interactions are simply the simplest, most primitive possible kind of logical inte
3Peterdjones
How does EY know there are only two? Is it aprori knowledge? Is it empirical? Is it subject to falsification? How many failed reduictions-to-two-kinds-of-stuff do there have to be before TKoS is falsified?

How confident are we in the Great Reductionist Thesis? Short of the Great Reductionist Project's success, what would be evidence for or against it?

2Eliezer Yudkowsky
After it's been right the last 300 times or so, we should assess a substantial probability that it will be wrong before the 1,000th occasion, but believe much more strongly that it will be correct on the next occasion.

Only because you're cheating by reclassifying all cases where it was wrong as cases where we haven't figure out how to properly apply it yet.

5JoshuaZ
That doesn't seem to answer dspeyer's questions.

Okay. I'll bet with somewhere around 50% probability that the Great Reductionist Project as I've described it works, with reduction to a single thing counting as success, and requiring magical reality-fluid counting as failure. I'll bet with 95% probability that it's right on the next occasion for anthropics and magical reality-fluid, and with 99+ probability that it's right on the next occasion for things that confuse me less; except that when it comes to e.g. free will, I don't know who I'd accept as a judge that didn't think the issue already settled.

3JoshuaZ
Can you expand on what you mean by this?
2[anonymous]
Either the Great Reductionist Thesis ("everything meaningful can be expressed by [physics+logic] eventually") is itself expressible with physics+logic (eventually) or it isn't. If it is, then it might be true. If it isn't, then the great reductionist thesis is not true, because the proposition it expresses is not meaningful. I'm worried about this possibility because the phrase 'everything meaningful' strikes me as dangerously self-referential.

This is a reply to the long conversation below between Esar and RobbBB.

Let me first say that I am grateful to Esar and RobbBB for having this discussion, and double-grateful to RobbBB for steelmanning my arguments in a very proper and reasonable fashion, especially considering that I was in fact careless in talking about "meaningful propositions" when I should've remembered that a proposition, as a term of art in philosophy, is held to be a meaning-bearer by definition.

I'm also sorry about that "is meaningless is false" phrase, which I'm certain was a typo (and a very UNFORTUNATE typo) - I'm not quite sure what I meant by it originally, but I'm guessing it was supposed to be "is meaningless or false", though in the context of the larger debate now that I've read it, I would just say "colorless green ideas sleep furiously" is "meaningless" rather than false. In a strict sense, meaningless utterances aren't propositions so they can't be false. In a looser sense, an utterance like "Maybe we're living in an inconsistent set of axioms!" might be impossible to render coherent under strict standards of meaning, while also being... (read more)

R3) "What sort of utterances can we argue about in English?" is (perhaps deliberately) vague. We can argue about colorless green ideas, if nothing else at the linguistic level. Perhaps R3 is not about meaning, but about debate etiquette: What are the minimum standards for an assertion to be taken seriously as an assertion (i.e., not as a question, interjection, imperative, glossolalia, etc.). In that case, we may want to break R3 down into a number of sub-questions, since in different contexts there will be different standards for the admissibility of an argument.

I'm not sure what exactly a sensus divinatus is, or why it wouldn't be axiomatizable. Perhaps it would help flesh out the Great Reductionist Thesis if we evaluated which of these phenomena, if any, would violate it:

  1. Objective fuzziness. I.e., there are entities that, at the ultimate level, possess properties vaguely; perhaps even some that exist vaguely, that fall in different points on a continuum from being to non-being.

  2. Ineffable properties, i.e., ones that simply cannot be expressed in any language. The specific way redness feels to me, for instance, might be a candidate for logico-physical inexpressibility

... (read more)
9Eliezer Yudkowsky
I have no objection to your description of R3 - basically it's there so that (a) we don't think that something not immediately obviously being in R2 means we have to kick it off the table, and (b) so that when somebody claims their imagination is giving them veridical access to something, we can describe the thing accessed as membership in R3, which in turn is (and should be) too vague for anything else to be concluded thereby; you shouldn't be able to get info about reality merely by observing that you can affirm English utterances. Insofar as your GRT violations all seem to me to be in R3 and not R2 (i.e., I cannot yet coherently imagine a state of affairs that would make them true), I'm mostly willing to agree that reality actually being that way would falsify GRT and my proposed R2. Unless you pick one of them and describe what you mean by it more exactly - what exactly it would be like for a universe to be like that, how we could tell if it were true - in which case it's entirely possible that this new version will end up in the logic-and-physics R2, and for similar reasons, wouldn't falsify GRT if true. E.g., a version of "nihilism" that is cashed out as "there is no ontologically fundamental reality-fluid", denial of "reference" in which there is no ontologically basic descriptiveness, eliminativism about "logic" which still corresponds to a computable causal process, "relativized" descriptions along the lines of Special Relativity, and so on. This isn't meant to sneak reductionism in sideways into universes with genuinely ineffable magic composed of irreducible fundamental mental entities with no formal effective description in logic as we know it. Rather, it reflects the idea that even in an intuitive sense, sufficiently effable magic tends toward science, and since our own brains are in fact computable, attempts to cash out the ineffable in greater detail tend to turn it effable. The traditional First-Cause ontologically-basic R3 "God" falsifies reductio
9Rob Bensinger
Here are three different doctrines: 1. Expressibility. Everything (or anything) that is the case can in principle be fully expressed or otherwise represented. In other words, an AI is constructible-in-principle that could model every fact, everything that is so. Computational power and access-to-the-data could limit such an AI's knowledge of reality, but basic effability could not. 2. Classical Expressibility. Everything (or anything) that is the case can in principle be fully expressed in classical logic. In addition to objective ineffability, we also rule out objective fuzziness, inconsistency, or 'gaps' in the World. (Perhaps we rule them out empirically; we may not be able to imagine a world where there is objective indeterminacy, but we at least intuit that our world doesn't look like whatever such a world would look like.) 3. Logical Physicalism. The representational content of every true sentence can in principle be exhaustively expressed in terms very similar to contemporary physics and classical logic. Originally I thought that your Great Reductionist Thesis was a conjunction of 1 and 3, or of 2 and 3. But your recent answers suggest to me that for you GRT may simply be Expressibility (1). Irreducibly unclassical truths are ruled out, not by GRT, but by the fact that we don't seem to need to give up principles like Non-Contradiction and Tertium Non Datur in order to Speak Every Truth. And mentalistic or supernatural truths are excluded only insofar as they violate Expressibility or just appear empirically unnecessary. If so, then we should be very careful to distinguish your confidence in Expressibility from your confidence in physicalism. Neither, as I formulated them above, implies the other. And there may be good reason to endorse both views, provided we can give more precise content to 'terms very similar to contemporary physics and classical logic.' Perhaps the easiest way to give some meat to physicalism would be to do so negatively: List all
6Eliezer Yudkowsky
So... in my world, transubstantiation isn't in R2, because I can't coherently conceive of what a substance is, apart from accidents. For a similar reason, I don't yet have R2-language for talking about a universe being metaphysically made of anything. I mean, I can say in R3 that perhaps physics is made of cheese, just like I can say that the natural numbers are made of cheese, but I can't R2-imagine a coherent state of affairs like that. A similar objection applies to a logical universe which is allegedly made out of mental stuff. I don't know how to imagine a logically structured universe being made of anything. Having Latin-language phonemes carve at the joints of fundamental reality seems very hard, because in my world Latin-language phonemes are already reduced - there's already sequential sound-patterns making them up, and the obvious way to have a logic describing the physics of such a world is to have complex specifications of the phonemes which are 'carving at the joints'. It's not totally clear to me how to make this complex thing a fundamental instead, though perhaps it could be managed via a logic containing enough special symbols - but to actually figure out how to write out that logic, you would have to use your own neuron-composed brain in which phonemes are not fundamental. I do agree that - if it were possibly to rule out the Matrix, I mean, if spells not only work but the incantation is "Stupefy" then I know perfectly well someone's playing an S-day prank on me - that finding magic work would be a strong hint that the whole framework is wrong. If we actually find that prayers work, then pragmatically speaking, we've received a hint that maybe we should shut up and listen to what the most empirically powerful priests have to say about this whole "reductionism" business. (I mean, that's basically why we're listening to Science.) But that kind of meta-level "no, you were just wrong, shut up and listen to the spiritualist" is something you'd only exe

So... in my world, transubstantiation isn't in R2, because I can't coherently conceive of what a substance is, apart from accidents.

Many mathematicians, scientists, and philosophers believe in things they call 'sets.' They believe in sets partly because of the 'unreasonable effectiveness' of set theory, partly because they help simplify some of our theories, and partly because of set theory's sheer intuitiveness. But I have yet to hear anyone explain to me what it means for one non-spatiotemporal object to 'be an element of' another. Inasmuch as set theory is not gibberish, we understand it not through causal contact or experiential acquaintance with sets, but by exploring the theoretical role these undefined 'set' thingies overall play (assisted, perhaps, by some analogical reasoning).

'Substance' and 'accident' are antiquated names for a very commonly accepted distinction: Between objects and properties. (Warning: This is an oversimplification. See The Warp and Woof of Metaphysics for the historical account.) Just as the efficacy of mathematics tempts people into reifying the set-member distinction, the efficacy of propositional calculus (or, more generally, of human language!)... (read more)

3[anonymous]
Can I run something by you? An argument occurred to me today that seems suspect, but I don't know what I'm getting wrong. The conclusion of the argument is that GRTt entails GRTm. For the purposes of this argument, GRTt is the statement that all true statements have a physico-logical expression (meaning physical, logical, or physical+logical expression). GRTm is the statement that all true and all false statements have a physico-logical expression. P1) All true statements have a physico-logical expression. (GRTt) P2) The negation of any false statement is true. P3) If a statement has a physico-logical expression, its negation has a physico-logical expression. P4) All false statements have a physico-logical expression. C) All true and all false statements have a physical-logical expression. (GRTm) So for example, suppose XYZ is false, and has no physico-logical expression. If XYZ is false, then ~XYZ is true. By GRTt, ~XYZ has a physico-logical expression. But if ~XYZ has a physico-logical expression, then ~(~XYZ), or XYZ, does. Throwing a negation in front of a statement can't change the nature of the statement qua reducible. Therefore, GRTt entails GRTm. What do you think?
5Rob Bensinger
I think your argument works. But I can't accept GRTm; so I'll have to ditch GRTt. In its place, I'll give analyzing GRT another go; call this new formulation GRTd: * 'Every true statement can be deductively derived from the set of purely physical and logical truths combined with statements of the semantics of the non-physical and non-logical terms.' This is quite unlike (and no longer implies) GRTm, 'Every meaningful statement is expressible in purely physical and logical terms.' The problem for GRTt was that statements like 'there are no gods' and 'there are no ghosts' seem to be true, but cast in non-physical terms; so either they are reducible to physical terms (in which case both GRTt and GRTm are true), or irreducible (in which case both GRTt and GRTm are false). For GRTd, it's OK if 'there are no ghosts' can't be analyzed into strictly physical terms, provided that 'there are no ghosts' is entailed by a statement of what 'ghost' means plus all the purely physical and logical truths. For example, if part of what 'ghost' means is 'something non-physical,' then 'there are no ghosts' will be derivable from a complete physical description of the world provided that such a description includes a physical/logical totality fact. You list everything that exists, then add the totality fact 'nothing except the above entities exists;' since the semantic of 'ghost' ensures that 'ghost' is not identical to anything on the physicalism list, we can then derive that there are no ghosts. Note that the semantic 'bridge laws' are themselves entailed by (and, in all likelihood, analyzable into) purely physical facts about the brains of English language speakers.
5[anonymous]
Well done, I like GRTd especially in that it pulls free of reference to expressibility and meaningfulness. My only worry at the moment is the totality fact, partly because of what I take EY to want from the GRT in reference to R1. I take it we will agree right off that the totality fact can't follow from having listed all the physico-logical facts. Otherwise we could derive 'there are no ghosts' right now, just given the meaning of 'ghost'. But we need the answer to the question posed by R1 to be (in every case which doesn't involve a purely logical contradiction) an empirical answer. What we want to say about ghosts is not that they're impossible, but that their existence is extremely unlikely given the set of physico-logical facts we do have. We won't ever have opportunity to deploy a totality fact (since this requires omniscience, it seems), but it seems like an important part of the expression of the GRTd. But if we can't get the totality fact just from having listed all the physico-logical facts, and if the totality fact must itself be a physico-logical fact then I have a hard time seeing how we can deduce from physico-logical omniscience that there are no ghosts. In order to deduce the non-existence of ghosts, we'd need first to deduce the totality fact (since this is a premise in the former deduction), but if the totality fact is not deducible from all the physico-logical facts, then in order to deduce it, it looks like we need 'there are no ghosts' as a premise. But then our deduction of 'there are no ghosts' begs the question. Unless I'm missing something, it seems to me that the totality fact has to end up being deducible from all the physico-logical facts if deductions which employ it are to be valid. But this again makes the GRTd (specifically that part of it which describes the totality fact) an a priori claim, which we're trying to avoid especially because it means that GRTd is not an answer to R1 (which is what EY, at least, is looking for).
2Rob Bensinger
The totality fact could take a number of different forms. For instance, 'Everything is a set, a spacetime region, a boson, or a fermion' would suffice, if our semantics for 'ghost' made it clear that ghosts are none of those things. This is why we don't need omniscient access to every object to formulate the fact; all we need is a plausibly finished set of general physical categories. If 'physical' and 'logical' are themselves well-defined term in our physics, we could even formulate the totality fact simply as: 'Everything is physical or logical.' Another, more modest totality-style fact would be: 'The physical is causally closed.' This weaker version won't let us derive 'there are no ghosts,' but it will let us derive 'ghosts, if real, have no causal effect on the physical,' which is presumably what we're most interested in anyway. GRTd itself doesn't force you to accept totality facts (also known as Porky Pig facts). But if you reject these strange facts, then you'll end up needing either to affirm GRTm too, or needing to find some way to express negative existential facts about Spooky Things in your pristine physical/logical language. All three of these approaches have their costs, but I think GRTd is the most modest option, since it doesn't commit us to any serious speculation about the limits of semantics or translatability. I think the totality fact is a physical (or 'mixed') fact. Intuitively, it's a fact about our world that it doesn't 'keep going' past a certain point. The totality fact can't be strictly deduced from any other fact. In all cases these totality facts are empirical inferences from the apparent ability of our physical predicates to account for everything. Inasmuch as we are confident that (category-wise) 'That's all, folks,' we are confident in there being no more categories, and hence (if only implicitly) in there being no Spooky addenda. Notice this doesn't commit us to saying that we can meaningfully talk about Spooky nonphysical enti
0[anonymous]
So, I like GRTd, insofar as it captures both what is so plausible about physicalism, and insofar as the 'totality fact' expresses an important kind of empirical inference: from even a small subset of all the physico-logical facts, we can get a good general picture of how the universe works, and what kinds of things are real. I still have questions about the GRTd as a principle however. I don't see how the following three statements are consistant with one another: S1) GRTd: 'Every true statement can be deductively derived from the set of purely physical and logical truths combined with statements of the semantics of the non-physical and non-logical terms.' S2) The totality fact is true. S3) 'The totality fact can't be strictly deduced from any other fact.' One of these three has to go, and I strongly suspect I've misunderstood S3. So my question is this: Given all the physical and logical facts, combined with statements of the semantics of any non-physical and non-logical terms one might care to make use of, do you think we could deduce the totality fact?
0Rob Bensinger
The totality fact is one of the physical/logical facts, and can be expressed in purely physical/logical terms. For instance, in a toy universe where the only properties were P ('being a particle') and C ('being a spacetime point'), the totality fact would have the form ∀x(P(x) ∨ C(x)) to exclude other categories of entity. A more complete totality fact would exclude bonus particles and spacetime points too, by asserting ∀x(x=a ∨ x=b ∨ x=c...), where {a,b,c...} is the (perhaps transfinitely large) set of particles and points. You can also express the same idea using existential quantification. S1, S2, and S3 are all correct, provided that the totality fact is purely physical and logical. (Obviously, any physical/logical fact follows trivially from the set of all physical/logical facts.) GRTd says nothing about which, if any, physical/logical facts are derivable from a proper subset of the physical/logical. (It also says nothing about whether there are non-physicological truths; it only denies that, if there are some, their truth or falsehood can fail to rest entirely on the physical/logical facts.) A single giant totality fact would do the job, but you could also replace it (or introduce redundancy) by positing a large number of smaller totality facts. Suppose you want to define a simple classical universe in which a 2x2x2-inch cube exists. You can quantify over a specific 2x2x2-inch region of space, and assert that each of the points within the interval is occupied. But that only posits an object that's at least that large; we also need to define the empty space around it, to give it a definite border. A totality fact (or a small army of them) could give you the requisite border, establishing 'there's no more cube' in the same way that the Giant Totality Fact establishes 'there's no more reality.' But if you get a kick out of parsimony or concision, you don't need to do this again and again for each new bounded object you posit. Instead, you can stick to positive
-2[anonymous]
Ah, I took GRTd to mean that 'every true statement (including all physical and logical truths) can be deductively derived from the set of purely physical and logical truths (excluding the one to be derived)...'.Thus, if the totality fact is true, then it should be derivable from the set of all physico-logical facts (excluding the totality fact). Is that right, or have I misunderstood GRTd? I may, I think, just be overestimating what it takes to plausibly posit the totality fact: i.e. you may just mean that we can have a lot of confidence in the totality fact just by having as broad and coherent a view of the universe as we actually do right now. The totality fact may be false, but its supported in general by the predictive power of our theories and an apparent lack of spooky phenomena. If we had all the physico-logical facts, we could be super duper confident in the totality fact, as confident as we are about anything. It would by no means follow deductively from the set of all physico-logical facts, but it's not that sort of claim anyway. Is that right?
-1Rob Bensinger
The edit is fine. Let me add that 'the' totality fact may be a misleading locution. Nearly every model that can be analyzed factwise contains its own totality fact, and which model we're in will change what the 'totality' is, hence what the shape of the totality fact is. We can be confident that there is at least one fact of this sort in reality, simply because trivialism is false. But GRTd does constrain what that fact will have to look like: It will have to be purely logical and physical, and/or derivable from the purely logical and physical truths. (And the only thing we could derive a Big Totality Fact from would be other, smaller totality facts like 'there's no more square,' plus a second-order totality fact.)
0[anonymous]
Excellent, I think I understand. GRTd sounds good to me, and I think you should convince EY to adopt it as opposed to GRTt/m.
-1Rob Bensinger
I didn't intend for you to read '(excluding the one to be derived)' into the statement. The GRTd I had in mind is a lot more modest, and allows for totality facts and a richer variety of causal relations. GRTd isn't a tautology (unless GRTm is true), because if there are logically underivable nonphysical and nonlogical truths, then GRTd is false. 'X can be derived from the conjunction of GRTd with X' is a tautology, but an innocuous one, since it leaves open the possibility that 'X' on its lonesome is a garden-variety contingent fact.
-1[anonymous]
Sorry, I didn't expect you to read my post so quickly, and I edited it heavily without marking my edits (a failure of etiquette, I admit).
-1Peterdjones
EY, please hand the SIAI keys to Rob!
5Eliezer Yudkowsky
What could it mean for a ghost to exist but be nonphysical? I think that what you think are counterexamples to GRTm are a large number of things which, examined carefully, would end up in R3-only, and not in R2. I furthermore note that you just rejected GRTt, which sounds scarily like concluding that actual non-reductionist things exist, because you didn't want to accept the conclusion that talk of non-physical ghosts might fail strict qualifications of meaning. How could you possibly get there from here? How could your thoughts about what's meaningful, entail that the laws of physics must be other than what we'd previously observed them to be? Shouldn't reaching that conclusion require like a particle accelerator or something? Alternatively, perhaps your rejection of GRTt isn't intended to entail that non-reductionist things exist. If so, can you construe a narrower version of GRTt which just says that, y'know, non-reductionist thingies don't exist? And then would Esar's argument not go through for this version? I think Esar's argument mainly runs into trouble when you want to call R3-statements 'false', in which case their negations are colloquially true but in R3-only because there's no strictly coherent and meaningful (R2) way to describe what doesn't exist (i.e. non-physical ghosts). If your desire to apply this language demands that you consider these R3-statements meaningful, then you should reject GRTm, I suppose - though not because you disagree with me about what stricter standards entail, but because you want the word "meaningful" to apply to looser standards. However, getting from there to rejecting R1 is a severe problem - though from the description, it's possible you don't mean by GRTt what I mean by R1. I am a bit worried that you might want 'non-physical ghosts don't exist' to be true, hence meaningful, hence its negation to also be meaningful, hence a proposition, hence there to be some state of affairs that could correspond to non-physical gho
3Rob Bensinger
To reject GRTt is to affirm: "Some truths are not expressible in physical-and/or-logical terms." Does that imply that irreducibly nonphysical things exist? I don't quite see why. My initial thought is this: I am much more confident that physicalism is true than that nonphysicalism is inexpressible or meaningless. But if this physicalism I have such faith in entails that nonphysicalism is inexpressible, then either I should be vastly more confident that nonphysicalism is meaningless, or vastly less confident that physicalism is true, or else GRTt does not capture the intuitively very plausible heart of physicalism. Maybe GRTt and GRTm are correct; but that would take a lot of careful argumentation to demonstrate, and I don't want to hold physicalism itself hostage to GRTm. I don't want a disproof of GRTm to overturn the entire project of reductive physicalism; the project does not hang on so thin a thread. So GRTd is just my new attempt to articulate why our broadly naturalistic, broadly scientific world-view isn't wholly predicated on our confidence in the meaninglessness of the assertions of the Other Side. This dispute is over whether, in a physical universe, we can make sense of anyone even being able to talk about anything non-physical. Four issues complicate any quick attempts to affirm GRTm: 1) Meaning itself is presumably nonfundamental. Without a clear understanding of exactly what is neurologically involved when a brain makes what we call 'representations,' attempts to weigh in on what can and can't be meaningful will be somewhat speculative. And since meaning is nonfundamental, truth is also nonfundamental, is really an anthropological and linguistic category more than a metaphysical one; so sacrificing GRTt may not be as devastating as it initially seems. 2) 'Logical pinpointing' complicates our theory of reference. Numbers are abstracted from observed regularities, but we never come into causal contact with numbers themselves; yet we seem to be able t
3Alejandro1
The need for a totality fact is reminiscent of the beginning of Wittgenstein's Tractatus, It is interesting how the same (or at least analogous) problems, arguments and concerns reappear in successive iterations of the Great Reductionist Project.
3Rob Bensinger
I don't see anything wrong with this kind of self-reference. We can only explain what generalizations are by asserting generalizations about generalization; but that doesn't undermine generalization itself. GRT would only be an immediate problem for itself if GRT didn't encompass itself.
1[anonymous]
Okay, so lets assume that the generalization side of things is not a problem, though I hope you'll grant me that if a generalization about x's is meaningful, propositions expressing x's individually are meaningful. That is, if 'every meaningful proposition can be expressed by physics+logic (eventually)', then 'the proposition "the cat is on the mat" is meaningful' is meaningful. It's this that I'm worried about, and the generalization only indirectly. So: 1) A proposition is meaningful if and only if it is expressible by physics+logic, or merely by logic. 2) If a proposition is expressible by physics+logic, it constrains the possible worlds. 3) If the proposition "the cat is on the mat" is meaningful, and it is expressible by physics+logic, then it constrains the possible worlds. 4) If the proposition "the cat is on the mat" constrains the possible worlds, then the proposition "the proposition 'the cat is on the mat' is meaningful" does not constrain the possible worlds. Namely, no proposition of the form '"XYZ" constrains the possible worlds' itself constrains the possible worlds. So if 'XYZ' constrains the possible worlds, then for every possible world, XYZ is either true of that world or false of that world. But if the proposition '"XYZ" constrains the possible worlds' expresses simply that, namely that for every possible world XYZ is either true or false of that world, then there is no world of which '"XYZ" constrains the possible worlds' is false. 5) The proposition 'the proposition "the cat is on the mat" is meaningful' is not both meaningful and expressible by physics+logic. But it is meaningful, and therefore (as per premise 1) it is expressible by mere logic. 6) Every generalization about a purely logical claim is itself a purely logical claim (I'm not sure about this premise) 7) The GRT is a purely logical claim. I'm thinking EY wants to get off the GRT boat here: I don't think he intends the GRT to be a logical axiom or derivable from logical axi
3Rob Bensinger
I don't think we need this rule. It would make logical truths / tautologies meaningless, inexpressible, or magical. (We shouldn't dive into Wittgensteinian mysticism that readily.) That depends on what you mean by "proposition." The written sentence "the cat is on the mat" could have been ungrammatical or semantically null, like "colorless green ideas sleep furiously." After all, a different linguistic community could have existed in the role of the English language. So our semantic assertion could be ruling out worlds where "the cat is on the mat" is ill-formed. On the other hand, if by "proposition" you mean "the specific meaning of a sentence," then your sentence is really saying "the meaning of 'the cat is on the mat' is a meaning," which is just a special case of the tautology "meanings are meanings." So if we aren't committed to deeming tautologies meaningless in the first place, we won't be committed to deeming this particular tautology meaningless. This looks like a problem of self-reference, but it's really a problem of essence-selection. When we identify something as 'the same thing' across multiple models or possible worlds, we're stipulating an 'essence,' a set of properties providing identity-conditions for an object. Without such a stipulation, we couldn't (per Leibniz's law) identify objects as being 'the same' while they vary in temporal, spatial, or other properties. If we don't include the specific meaning of a sentence in its essence, then we can allow that the 'same' sentence could have had a different meaning, i.e., that there are models in which sentence P does not express the semantic content 'Q.' But if we instead treat the meaning of P as part of what makes a sentence in a given model P, then it is contradictory to allow the possibility that P would lack the meaning 'Q,' just as it would be contradictory to allow the possibility that P could have existed without P existing. What's important to keep in mind is that which of these cases ar
0[anonymous]
No, I didn't say that constraining possible worlds is a necessary condition on meaning. I said this: This leaves open the possibility of meaningful, non-world-constraining propositions (e.g. tautologies, such as the claims of logic), only they are not physics+logic expressible, but only logic expressible. That's not relevant to my point. I'd be happy to replace it with any proposition we can agree (for the sake of argument) to be meaningful. In fact, my argument will run with an unmeaningful proposition (if such a thing can be said to exist) as well. No, this isn't what I mean. By 'proposition' I mean a sentence, considered independently of its particular manifestation in a language. For example, 'Schnee ist weiss' and 'Snow is white' express the same proposition. Saying and writing 'shnee ist weiss' express the same proposition. I didn't understand this. Propositions (as opposed to things which express propositions) are not "in" worlds, and nothing of my argument involved identifying anything across multiple worlds. EY's OP stated that in order for an [empirical] claim to be meaningful, it has to constrain possible worlds, e.g. distinguish those worlds in which it is true from those in which it is false. Since a statement about the meaningfulness of propositions doesn't do this (i.e. it's a priori true or false of all possible worlds), it cannot be an empirical claim. So I haven't said anything about essence, nor does any part of my argument require reference to essence. Agreed, it is not a merely logical claim. Given that it is also not an empirical (i.e. a physics+logic claim), and given my premise (1), which I take EY to hold, then we can conclude that the GRT is meaningless.
0Rob Bensinger
My mistake. When you said "physics+logic," I thought you were talking about expressing propositions in general with physics and/or logic (as opposed to reducing everything to logic), rather than talking about mixed-reference assertions in particular (as opposed to 'pure' logic). I think you'll need to explain what you mean by "logic"; Eliezer's notion of mixed reference allows that some statements are just physics, without any logical constructs added. What 'Schnee ist weiss' and 'Snow is white' have in common is their meaning, their sense. A proposition is the specific meaning of a declarative sentence, i.e., what it declares. Then they don't exist. By 'the world' I simply mean 'everything that is,' and by 'possible world' I just mean 'how everything-that-is could have been.' The representational content of assertions (i.e., their propositions), even if they somehow exist outside the physical world, still have to be related in particular ways to our utterances, and those relations can vary across physical worlds even if propositions (construed non-physically) cannot. The utterance 'the cat is on the mat' in our world expresses the proposition . But in other worlds, 'the cat is on the mat' could have expressed a different proposition, or no proposition at all. Now let's revisit your (4): A clearer way to put this is: If the proposition p, , varies in truth-value across possible worlds, then the distinct proposition q, , does not vary in truth-value across possible worlds. But what does it mean to say that a proposition is meaningful? Propositions just are the meaning of assertions. There is no such thing as a 'meaningless proposition.' So we can rephrase q as really saying: . In other words, you are claiming that all propositions exist necessarily, that they exist at (or relative to) every possible world, though their truth-value may or may not vary from world to world. Once we analyze away the claim that propositions are 'meaningful' as really just the claim t
0[anonymous]
We have a couple of easy issues to get out of the way. The first is the use of the term 'proposition'. That term is famously ambiguous, and so I'm not attached to using it in one way or another, if I can make myself understood. I'm just trying to use this term (and all my terms) as EY is using them. In this case, I took my cue from this: http://lesswrong.com/lw/eqn/the_useful_idea_of_truth/ EY does not seem to intend 'proposition' here to be identical to 'meaning'. At any rate, I'm happy to use whatever term you like, though I wish to discuss the bearers of truth value, and not meanings. I don't want to define the GRT at all. I'm using EY's definition, from the OP: You might want to disagree with EY about this, but for the purposes of my argument I just want to talk about EY's conception of the GRT. Nevertheless, I think EY's conception, and therefore mine, follows from yours, so it may not matter much as long as you accept that everything false should also be expressible by physics+logic (as EY, I believe, wants to maintain). I'd like to get these two issues out of the way before responding to the rest of your interesting post. Let me know what you think.
2Rob Bensinger
Eliezer is not very attentive to the distinction between propositions, sentences (or sentence-types), and utterances (or sentence-tokens). We need not import that ambiguity; it's already caused problems twice, above. An utterance is a specific, spatiotemporally located communication. Two different utterances may be the same sentence if they are expressed in the same way, and they intend the same proposition if they express the same meaning. So: A) 'Schnee ist weiss.' B) 'Snow is white.' C) 'Snow is white.' There are three utterances above, two distinct sentences (or sentence-types), and only one distinct proposition/meaning. Clearer? EY misspoke. As with the proposition/utterance confusion, my interest is in evaluating the substantive merits or dismerits of an Eliezer steel man, not in fixating on his overly lax word choice. Reductionism is falsified if they are true sentences that cannot be reduced, not just if there are meaningful but false ones that cannot be so reduced. It's obvious that EY isn't concerned with the reducibility of false sentences because he doesn't consider it a grave threat, for example, that the sentence "Some properties are not reducible to physics or logic." is meaningful.
1[anonymous]
Which one is the proper object of truth-evaluation, and which one is subject to the question 'is it meaningful'? EY's position throughout this sequence, I think, has been that whichever is the proper object of truth-evaluation is also the one about which we can ask 'is it meaningful?' If you don't think these can be the same, then your view differs from EY's substantially, and not just in terminology. How about this? I'll use the term 'gax' for the thing that is a) properly truth-evaluable, and b) subject to the question 'is this meaningful'. Maybe, but the entire sequence is about the question of a criterion for the meaningfulness of gaxes. His motivation may well be to avert the disaster of considering a true gax to be meaningless, but his stated goal throughout the sequence is establishing a criterion for meaningfulness. So I guess I have to ask at this point: other than the fact that you think his argument stands stronger with your version of the GRT, do you have any evidence (stronger than his explicit statement otherwise) that this is EY's actual view?
-1Rob Bensinger
The proposition/meaning is what we evaluate for truth. Thus utterances sharing the same proposition cannot differ in truth-value. Utterances or utterance-types can be evaluated for meaningfulness. To ask 'Is that utterance meaningful?' is equivalent to asking, for apparent declarative sentences, 'Does that utterance correspond to a proposition/meaning?' You could ask whether sentence-types or -tokens intend propositions (i.e., 'are they meaningful?'), and, if they do intend propositions, whether they are true (i.e., whether the propositions correspond to an obtaining fact). But, judging by how Eliezer uses the word 'proposition,' he doesn't have a specific stance on what we should be evaluating for truth or meaningfulness. He's speaking loosely. I think the sequence is about truth, not meaning. He takes meaning largely for granted, in order to discuss truth-conditions for different classes of sentence. He gave a couple of hints at ways to determine that some utterance is meaningless, but he hasn't at all gone into the meta-semantic project of establishing how utterances acquire their content or how content in the brain gets 'glued' (reference magnetism) to propositions with well-defined truth-conditions. He hasn't said anything about what sorts of objects can and can't be meaningful, or about the meaning of non-assertive utterances, or about how we could design an A.I. with intentionality (cf. the Chinese room), or about what in the world non-empirical statements denote. So I take it that he's mostly interested in truth here, and meaning is just one of the stepping stones in that direction. Hence I don't take his talk of 'propositions' too seriously. It would be a waste of effort to dig other evidence up. Ascribing your version of GRT to Eliezer requires us to theorize that he didn't spend 30 seconds thinking about GRT, since 30 seconds is all it would take to determine its falsehood. If that version of GRT is his view, then his view can be dismissed immediately
0[anonymous]
Okay, it doesn't look like we can make any progress here, since we cannot agree on what EY's stance is supposed to be. I think you're wrong that EY hasn't said much about the problem of meaning in this sequence. That's been its explicit and continuous subject. The question throughout has been ...and this seems to have been discussed throughout, e.g.: But if you've been reading the same sequence I have, and we still don't agree on that, then we should probably move on. That said... I'd be interested to know what you have in mind here. Why would the 'meaningfulness' version of the GRT be so easy to dismiss? I want, first, to be clear that I've found this conversation very helpful and interesting (as all my conversations with you have been). Second, the above is unfair: understanding EY in terms of what he explicitly and literally says is not 'the most absurd possible interpretation'. It may be the wrong interpretation, but to take him at face value cannot be called absurd.

The colloquial meaning of "proposition" is "an assertion or proposal". The simplest explanation for EY's use of the term is that he was oscillating somewhat between this colloquial sense and its stricter philosophical meaning, "the truth-functional aspect of an assertion". A statement's philosophical proposition is (or is isomorphic to) its meaning, especially inasmuch as its meaning bears on its truth-conditions.

Confusion arose because EY spoke of 'meaningless' propositions in the colloquial sense, i.e., meaningless linguistic utterances of a seemingly assertive form. If we misinterpret this as asserting the existence of meaningless propositions in the philosophical sense, then we suddenly lose track of what a 'proposition' even is.

The intuitive idea of a proposition is that it's what different sentences that share a meaning have in common; treating propositions as the locus of truth-evaluation allows us to rule out any doubt as to whether "Schnee ist weiss." and "Snow is white." could have different truth-values while having identical meanings. But if we assert that there are also propositions corresponding to meaningless locution... (read more)

1Peterdjones
Rob, you are better at being EY than EY is.
0[anonymous]
So we're assuming for the purposes of your argument here that the GRT is about meaningfulness, and we should distinguish this from your (and perhaps EY's) considered view of the GRT. So lets call the 'meaningfulness' version I attributed to EY GRTm, and the one you attribute to him GRTt. We can gloss the difference thusly: the GRTt states that anything true must be expressible in physical+logical, or merely logical terms (tautologies, etc.). The GRTm states that anything true or false must be expressible physical+logical, or merely logical terms. Your argument appears to be that on the GRTm view, the sentence "some properties are not reducible to physics or logic" would be meaningless rather than false. You take this to be a reductio, because that sentence is clearly meaningful and false. Why do you think that, on the GRTm, this sentence would be meaningless? The GRTm view, along with the GRTt view, allows that false statements can be meaningful. And I see no reason to think that the above sentence couldn't be expressed in physics+logic, or merely logical terms. So I'm not seeing the force of the reductio. You don't argue for the claim that "some properties are not reducible to physics or logic" would be meaningless on the GRTm view, so could you go into some more detail there?
3Rob Bensinger
One way to get at what I was saying above is that GRTt asserts that all true statements are analyzable into truth-conditions that are purely physical/logical, while GRTm asserts that all meaningful statements are analyzable into truth-conditions that are purely physical/logical. If we analyze "Some properties are not reducible to physics or logic." into physical/logical truth-conditions, we find that there is no state we can describe on which it is true; so it becomes a logical falsehood, a statement that is false given the empty set of assumptions. Equally, GRTm, if meaningful, is a tautology if we analyze its meaning in terms of its logico-physically expressible truth-conditions; there is no particular state of affairs we can describe in logico-physical terms in which GRTm is false. But perhaps focusing on analysis into truth-conditions isn't the right approach. Shifting to your conception of GRTm and GRTt, can you find any points where Eliezer argues for GRTm? An argument for GRTm might have the following structure: 1. Some sentences seem to assert non-physical, non-logical things. 2. But the non-physicologicality of those things makes those sentences meaningless. 3. So non-physicologicality in general probably makes statements meaningless. On the other hand, if Eliezer is really trying to endorse GRTt, his arguments will instead look like this: 1. Some sentences seem to be true but non-physicological. 2. But those sentences are either false or analyzable/reducible to purely physicological truths. 3. So non-physicological truths in general are probably expressible purely physicologically. Notice that the latter argumentative approach is the one he takes in this very article, where he introduces 'The Great Reductionist Project.' This gives us strong reason to favor GRTt as an interpretation over GRTm, even though viewed in isolation some of his language does suggest GRTm. Is there any dialectical evidence in favor of the alternative interpretation GRTm?
2[anonymous]
Here's my exchange with EY: EY replied: So I replied: And he said: So I'm actually not much less confused. His first reply seems to support GRTt. His second reply (the first word of it anyway) seems to support GRTm. Thoughts?
0Rob Bensinger
Thanks for taking the time to hunt down the facts! I think "Everything true and most meaningful false statements can be expressed this way." is almost completely clear. Unless a person is being deliberately ambiguous, saying "most P are Q" in ordinary English conversation has the implicature "some P aren't Q." I'm not even clear on what the grammar of "That statement is meaningless is false." is, much less the meaning, so I can't comment on that statement. I'm also not clear on how broad "the terms you describe in Logical Pinpointing, Causal Reference, and Mixed Reference" are; he may think that he's sketched meaningfulness criteria somewhere in those articles that are more inclusive than "The Great Reductionist Project" itself allows.
0[anonymous]
I think that was fairly clear. Each of those articles is explicitly about a form of reference sentences can have: logical, physical, or logicophysical, and his statement of the GRT was just that all meaningful (or in your reading, true) things can be expressed in these ways. But it occurs to me that we can file something away, and tomorrow I'm going to read over your last three or four replies and think about the GRTt whether or not it's EY's view. That is, we can agree that the GRTm view is not a tenable thesis as we understand it.
0Rob Bensinger
One possible source of confusion: What is the meaning of the qualifier "physical"? "Physical," "causal," "verifiable," and "taboo-able/analyzable" all have different senses, and it's possible that for some of them Eliezer is more willing to allow meaningful falsehoods than for others.
0Rob Bensinger
Yeah. I'll re-read his posts, too. In all likelihood I didn't even think about the ambiguity of some of his statements, because I was interpreting everything in light of my pet theory that he subscribes to GRTt. I think he does subscribe to GRTt, but I may have missed some important positivistic views of his if I was only focusing on the project of his he likes. Some of the statements you cited where he discusses 'meaning' do create a tension with GRTt.
0Eliezer Yudkowsky
My reply to this conversation so far is at: * http://lesswrong.com/lw/frz/mixed_reference_the_great_reductionist_project/8067
1[anonymous]
You'd just about convinced me, until I reread the OP and found it consistently and unequivocally discussing the question of meaningfulness. So before we go on, I'm just going to PM Eliezer and ask him what he meant. I'll let you know what he says if he replies.

From the logic point of view, counterfactuals are unproblematic, in that I can prove consistency of my favorite counterfactual logic by exhibiting a model. Then as far as a logician is concerned, we are done: our counterfactual worlds live in the mathematical structure of the exhibited model.


From the computer science point of view a little more is required, but as luck would have it, we can implement counterfactuals in some causal models. If your causal model is an actual circuit, then not only is it perfectly meaningful to ask "the output of the circuit is 1, what would be the output if I changed gate_0212 from OR to AND?" but it is possible to implement the counterfactual directly, and check. This is because we know enough about the causal model to ensure counterfactual invariance (e.g. other gates do not change). People use this kind of counterfactual reasoning to debug programs and circuits all the time! So from the "comp. sci" point of view, counterfactuals are unproblematic. The counterfactual universe "exists" in the operational sense of us having an effective procedure to get us there.


The problem arises when you are trying to deal wit... (read more)

I am finding the same problem with all articles in this sequence that I find with the explanation of Bayes' Theorem on Yudkowsky's main site. There are parts that seem so blindingly obvious they don't bear mentioning.

Yet soon thereafter, all of a sudden, I find myself completely lost. I can understand parts of the text separately, but can't link them together. I don't see where it comes from, where it's going, what problems it's addressing. I find it especially difficult to relate the illustrations to what's going on in the text.

I seldom have had this problem with the blog posts from the classical sequences (with some exceptions, such as his quantum physics sequence, which left me similarly confused).

Am I the only one who feels this way?

EDIT: upon reflection, this phenomenon, of feeling like there was a sudden, imperceptible jump from the boringly obvious to the utterly confusing, I've already experienced it before: in college, many lessons would follow this pattern, and it would take intensive study to figure out the steps the professor merrily jumped between what is, to them, two categories of the set of blindingly obvious things they already know and need to explain again. Maybe there's some sort of pattern there?

This is a problem known as "bad writing" which I continue to struggle with, even after many years. Can you list the first part where you felt lost? Somewhere between there and the previous part, I must have skipped something.

I do hope people appreciate that all the "blindingly obvious" parts are parts where (at least in my guesstimation, and often in my actual experience) somebody else would otherwise get lost. The "obvious" is not the same for all people.

4lukeprog
I'll be linking to this comment pretty often, I think, to reply to commentors on my own posts.
2Ritalin
I would tell you about it, but now I'm afraid I'm distracting you from the latest chapter in Methods, which is kind of overdue and eagerly expected (and half of a Na No Wri Mo novel's wordcount? what exactly have you been up to?). I swear I'll take the time to go through the sequence and identify and point out the points at which I got lost, but first I'll wait for you to publish that chapter. And yes, I know that one person's obvious is another's opaque; after all, that is the very root of this very problem. @Donvoters: I am genuinely sorry; I'm just being honest here. This is like being addicted to a drug and, after months of waiting, hearing that the next batch is imminent and huge. I'm sort of fretting right now, and I'm probably not the only one.
3NancyLebovitz
Did you get back to Eliezer about what you found difficult in Mixed Reference?
0Ritalin
I had forgotten. Thanks for reminding me.
0Ritalin
So, first of all, I'm going to complain that doing this was a pain in the neck, and that commenting/editing would be much easier on Gdocs or on some similar application. In fact, I used Gdocs to write this, because doing so on the LW interface would have been intolerable. Still, there you are; I suppose you mean an “elementary particle”? Took me a second to get it; it’s not the standard expression. I found this frankly misleading. When you say “mental image”, I think of an actual visualization, which is not a category a “low-level physical state” can belong to (or be “inisde of”). “Mental configuration” or “mental arrangement” might be more appropriate, and “corresponding” or “not corresponding” sound more acceptable. However, I’d rephrase the entire thing differently, as “different low-level physical states whose observation would result in a mental image of some apples on the table or a kitten on the table”. The picture underneath is confusing because the previous paragraph makes us expect a “brain” or a “head” “visualizing” the “high states”, not the “high states” being somehow (one is function of the other, a correspondence? identification? belonging) linked to the “this actual universe in all its low-level glory” picture. I also find the choice of fuzziness around the edges of picture fragments, and the use of dotted lines, to be rather jarring. Is it supposed to be cute? Because what it conveys to me is “we’re not sure” and “the concept is unclear” and “the correspondence is distant or uncertain”, and that contrasts strongly with the actual text, which is much more rigorous. At the very least, you may want the line from “the Universe” to “all possible worlds” to end in a thicker dot, and to distort the shape of “all the possible worlds that would result in “a bunch of apples on the table” (that’s what the dotted circle means, right?) to be bigger and more potato-shaped or something, as is traditional to denote “abstract set of stuff whose shape doesn’t matt
0BerryPick6
When reading your work, I often share the feeling that Ritalin just described. In this particular instance, I was with you up until you started talking about the Born probabilities and then I just felt totally lost.
6gwern
Ah yes. Have you read about 'inferential distance' yet? :)

Yes, I knew about them. I try to shorten them it in everything I do, from my vocabulary register to the concepts I use, which I try to make as rent-paying and empirical as possible. It's heavier work than I foresaw.

This has moved me from "impossible-to-understand nerd who talks down to you from an impenetrable ivory tower" to "that creepy guy who talks in punches and has strange ideas that make sense". Or, if you will, from a Sheldon Cooper to a coolness-impaired Tyler Durden. Socially, it wasn't a big gain.

2A1987dM
That's more or less how I felt about Penrose's The Road to Reality. The great thing about talking with someone in person (or at least, in real-time one-to-one conversations) is that you can first assess how large the inferential distance is, e.g. “What are you working on?” “Cosmic rays. Do you know what cosmic rays are?” “No.” “Do you know what subatomic particles are?” “No.” “Do you know what an atom is?” “Yes.”
1Ritalin
You just have to hope they won't Wheatley they way around your questions and try to feign understanding things they don't, treating knowledge like a status game. That can really put a damper on meaningful communication.
1A1987dM
I don't think that ever happened to me -- at worst, they incorrectly believed that the understanding they had got from popularizations was accurate. But pretty much everybody at some point admits “I wish I could understand everything of that, but that sounds cool”, except people who actually understand (as evidenced by the fact that they ask questions too relevant for them to be just parroting stuff to hide ignorance). (I guess the kind of people who treat everything like a status game would consider knowledge about sciency topics to be nerdy and therefore uncool.)
4Qiaochu_Yuan
One way to treat knowledge like a status game is to be a "science fan." This is a game you play with other "science fans," and you win by knowing more "mind-blowing facts" about science than other people. It is popular on Quora.
2MrMind
Absolutely not, it's quite a common feeling among mathematicians :)
4Ritalin
Ah, yes, the mathematician's double take. One should be wary of those, especially at a high level; when an elder mathematician wants to skip inferential steps for the sake of expediency, there's a chance that "then a miracle occurs" is somewhere in that mess of a blackboard. In fact, the whole point of having a younger chevruta is so that they can point out that kind of details the bigger, more inferentially-distant minds might accidentally gloss over. They're like the great writer's spell-checker. Or like the comment section for Yudkowsky's blog posts. Joking aside, I was actually wondering if others here felt the same way as I about EY's latest sequence of posts.
[-]Shmi170

Further to my other comment, how would one define a counterfactual in the Game of Life? Surely we should be able to analyze this simple case first if we want to talk about counterfactuals in the "real world"?

9faul_sname
Say we have a blank grid. It would be reasonable to say "if this blank grid had a glider, the glider would move up and left" even if there is no actual glider on the grid. You can still make a mental model of what would happen in a changed grid, even if that grid isn't instantiated. I chose the example of a glider to show that you don't actually have to run a step-by-step simulation of the grid to predict behavior and thus emphasize that a counterfactual is a mental model, not an actual universe. Counterfactuals require a universe and a model that is isomorphic to that universe in some way, but the isomorphism doesn't have to be perfect.
2Shmi
I like this example, and it counts as a counterfactual in our universe, where there is no actual glider drawn on an actual blank grid, but I am not sure it would count as a counterfactual in a GoL universe, unless you define such a universe to contain only a single blank canvas and nothing else.
2faul_sname
So what you're saying is that if we did define such a universe to contain only a single blank canvas and nothing else, our internal model of a grid with a glider would be a good example of a counterfactual? (thus demonstrating that counterfactuals can, themselves, contain counterfactuals).
0Shmi
Nice one. I am trying to nail the definition of a counterfactual in a GoL universe. Clearly, if you define this universe as a blank canvas, every game is a counterfactual. However, if the GoL universe is a collection of all possible games (hello, Tegmark!!), then there are no counterfactuals of the type you describe in it. However, what army1987 suggested would probably still count as a counterfactual: given a realization of a game and a certain position in it, find whether another realization, with an extra glider, converges to the same position. The counterfactualness there comes from privileging one game from the lot, not from mapping it to our universe.
4A1987dM
You go back to an earlier state of the grid, erase a glider, and resume the simulation from there.
6Shmi
A few thoughts on the matter. What you suggest is one type of a counterfactual: change the state. Erasing a glider is, of course, illegal under the rules of the game, so to make it a legal game, you have to trace it backwards from the new state, or else you are not talking about the GoL anymore. This creates an interesting aside. Like the real life, the Game of Life is not well-posed when run backwards: infinitely many configurations are legal just one simulation step back from a given one. This is because objects in the Game can die without a trace, and so